Skip to main content

Highly Accurate Verified Error Bounds for Krylov Type Linear System Solvers

  • Chapter
Perspectives on Enclosure Methods
  • 216 Accesses

Abstract

Preconditioned Krylov subspace solvers are an important and frequently used technique for solving large sparse linear systems. There are many advantageous properties concerning convergence rates and error estimates. However, implementing such a solver on a computer, we often observe an unexpected and even contrary behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adams. Life, the Universe and Everything. Ballantine Books, 1995.

    Google Scholar 

  2. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, 1983

    Google Scholar 

  3. American National Standards Institute / Institute of Electrical and Electronic Engineers, New York. A Standard for Binary Floating-Point Arithmetic, 1985. ANSI/IEEE Std. 754-1985.

    Google Scholar 

  4. T. J. Dekker. A floating-point technique for extending the available precision. Numer. Math., 18:224–242, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Demmel, B. Diament, and G. Malajovich. On the complexity of computing error bounds. www.cs.berkeley.edurdemmel/, 1999.

    Google Scholar 

  6. A. Facius. The need for higher precision in solving ill-conditioned linear systems. to be published in Iterative methods in Scientific Computation II, 2000.

    Google Scholar 

  7. A. Frommer and A. Weinberg. Verified error bounds for linear systems through the Lanczos process. Reliable Computing, 5(3):255–267, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Golub and C. van Loan. Matrix Computations. Johns Hopkins, third edition, 1996.

    Google Scholar 

  9. T. Granlund. The GNU Multiple Precision Arithmetic Library. vwv.csd.uu.se/documentation/-programming/gmp/

    Google Scholar 

  10. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

    Book  MATH  Google Scholar 

  11. M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49:409–436, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  13. R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC. Springer Verlag, 1992.

    Google Scholar 

  14. U. Kulisch. Advanced Aithmetic for the Digital Computer- Design of Arithmetic Units. Electronic Notes of Theoretical Computer Science, vwv.elsevier.nl/locate/entcs/volume24.html pp. 1-72, 1999.

    Google Scholar 

  15. C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research 0/ the National Bureau of Standards, 45:255–282, 1950.

    Article  MathSciNet  Google Scholar 

  16. The matrix market: a visual web database for numerical matrix data. math.nist.gov/MatrixMarket/

    Google Scholar 

  17. C. Paige. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, University of London, 1971.

    Google Scholar 

  18. C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Soft., 8:43–71, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogonalization. Math. Comput., 33:217–238, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. M. Rump. Validated solution of large linear systems. In R. Albrecht, G. Alefeld, and H. J. Stetter, editors, Validation Numeries, number 9 in Computing Supplementum, pages 191–212. Springer Verlag, 1993.

    Google Scholar 

  21. H. D. Simon. The Lanczos Algorithm for Solving Symmetrie Linear Systems. PhD thesis, University of California, Berkeley, 1982.

    Google Scholar 

  22. Z. Strakos. On the real convergence rate of the conjugate gradient method. Linear Algebra Appl., 154/156:535–549, 1991.

    Article  MathSciNet  Google Scholar 

  23. J. H. Wilkinson. The Aigebraic Eigenvalue Problem. Clarendon Press, Oxford, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Facius, A. (2001). Highly Accurate Verified Error Bounds for Krylov Type Linear System Solvers. In: Kulisch, U., Lohner, R., Facius, A. (eds) Perspectives on Enclosure Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6282-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6282-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83590-6

  • Online ISBN: 978-3-7091-6282-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics