Skip to main content

Using Cartesian Product for Animation

  • Conference paper
Computer Animation and Simulation 2000

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

In the field of geometric modelling for animation, 4D modelling (time being the fourth dimension) seems to be a natural extension of 3D modelling. But time dimension is not easy to apprehend and 4D objects are difficult to interpret and to control in general. We study the application of space-time cartesian product to construct 4D space-time objects; cartesian product is applied to space-time objects for which topological dimension is lesser than 4, and which are easy to interpret as animations. We propose here an interpretation of such objects, and we show how 4D space-time objects, resulting from cartesian product, can be interpreted (and therefore controlled) according to the operands of cartesian product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Aubert. Animation à base topologique. Thèse de doctorat, Université Louis Pasteur de Strasbourg, 1997.

    Google Scholar 

  2. F. Aubért and D. Bechmann. Animation by Deformation of Space-Time Objects. Eurographics’97, vol. 16(3): 57–66, Budapest, Hungary, 1997.

    Google Scholar 

  3. P. Borrel and D. Bechmann. Deformation of n-dimensional objects. Intern. Journal of Comp. Geometry and Appl., vol. 1(4): 427–453, 1991.

    Article  MATH  Google Scholar 

  4. S. Brandel, D. Bechmann and Y. Bertrand. STIGMA: a 4-dimensional modeler for animation. Ninth Eurographics Workshop on Animation and Simulation, Lisbon, Portugal, 1998.

    Google Scholar 

  5. S. Brandel, D. Bechmann and Y. Bertrand. The thickening: an operation for animation. Eurographics’99, vol. 18 (3), 1999.

    Google Scholar 

  6. D. Bechmann and N. Dubreuil. Animation through space and time based on a space deformation model. The Journal of Visualization and Computer Animation, vol. 4(3): 165–184, July-September 1993.

    Article  Google Scholar 

  7. D. Bechmann and N. Dubreuil. Order Controlled Free-Form Animation. The Journal of Visualization and Computer Animation, vol. 5(1): 11–32, January-March 1995.

    Article  Google Scholar 

  8. S. Coquillart and P. Jancène. Animated free-form deformation: An interactive animation technique. Computer Graphics, vol. 25 (4), July 1991.

    Google Scholar 

  9. N. Dubreuil and P. Lienhardt. Utilisation du Produit cartésien en modélisation 4D pour l’animation. 5èmes Journées de l’Association Française d’Informatique Graphique, Rennes, 1997.

    Google Scholar 

  10. H. Elter and P. Lienhardt. Cellular complexes as structured semi-simplicial sets. International Journal of Shape Modeling, vol. 1(2), 191–217, 1994.

    Article  MATH  Google Scholar 

  11. J-L. Florens, A. Luciani, C. Cadoz, B. Chanclou et A. Habibi. Modèles physiques images et sons. Processus de synchronisation et de simulation. 4èmes Journées de l’Association Française d’Informatique Graphique, 1996, Dijon.

    Google Scholar 

  12. A. Kaul and J. Rossignac. Solid-Interpolating Deformations: Construction and Animation of PIP’s. Eurographics’91, pp493-505, Vienna, 1991.

    Google Scholar 

  13. P. Lienhardt, X. Skapin et A. Bergey. Produit cartésien de cartes généralisées et de chaînes de cartes. Research report, Laboratoire IRCOM-SIC, Université de Poitiers, 2000. Submitted.

    Google Scholar 

  14. F. Lazarus and A. Verroust. Three-dimensional metamorphosis: a survey. The Visual Computer, Vol 14, pp 373–389, 1998.

    Article  Google Scholar 

  15. X. Skapin and P. Lienhardt. Cartesian product case study for animation. Research report. Laboratoire IRCOM-SIC, CNRS UMR 6615, Université de Poitiers, 2000.

    Google Scholar 

  16. D. Terzopoulos, J. Platt, A, Barr and K. Fleisher. Elastically deformable models. Computer Graphics (SIGGRAPH 87), pp. 205-214, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Skapin, X., Lienhardt, P. (2000). Using Cartesian Product for Animation. In: Magnenat-Thalmann, N., Thalmann, D., Arnaldi, B. (eds) Computer Animation and Simulation 2000. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6344-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6344-3_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83549-4

  • Online ISBN: 978-3-7091-6344-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics