Skip to main content

Automated Parameter Selection for a Computer Simulation of Auditory Nerve Fibre Activity using Genetic Algorithms

  • Conference paper
Artificial Neural Nets and Genetic Algorithms

Abstract

The Meddis computational model of auditory nerve fibre activity [9, 10] is widely used as a research tool in the study of auditory processing. The model is governed by a set of control parameters that allows it to simulate responses derived from physiological observations. In this paper, we describe a novel method for automatically determining the parameters required to simulate a range of rate-intensity responses from auditory nerve fibres using this model. A genetic algorithm [4] is employed to explore possible parameter combinations and to determine a ‘best fit’ solution. Two sets of experiments used to demonstrate the flexibility of the technique are described. Some possible wider applications of the technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. A. De Jong. An analysis of the Behaviour of a class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.

    Google Scholar 

  2. E. F. Evans. Cochlear nerve and cochlear nucleus. In W.D. Keidel and W.D. Neff, editors, Handbook of Sensory Physiology. Springer-Verlag, New York, 1987.

    Google Scholar 

  3. J. M. Fitzpatrick, J. J. Grefenstette, and D. Van Gucht. Image restriction by genetic search. In Proc. of IEEE Southest Conf., pages 460–464, 1984.

    Google Scholar 

  4. D. E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  5. M. J. Hewitt, R. Meddis, and T. Shackleton. A computer model of a cochlear-nucleus stellate cell: Responses to amplitude-modulated and pure-tone stimuli. Acoust. Soc. Am., 91:2096–2109, 1992.

    Article  Google Scholar 

  6. J. H. Holland. Adaption in Natural and Artificial System. University Press, Michigan, 1975.

    Google Scholar 

  7. D. O. Kim, S. Goshal, S. L. Khant, and K. Parham. A computational model with ionic conductances for the fusiform cell of the dorsal cochlear nucleus. Acoust. Soc. Am., 96:1501–1514, 1994.

    Article  Google Scholar 

  8. P. K. Kuhl and J. D. Miller. Speech perception by the chinchilla: Identification functions for synthetic VOT stimuli. J. Acoust. Soc. Am, 63:905–917, 1978.

    Article  Google Scholar 

  9. R. Meddis. Simulation of mechanical to neural transduction in the auditory receptor. Acoust. Soc. Am., 79:702–711, 1986.

    Article  Google Scholar 

  10. R. Meddis. Simulation of auditory-neural transduction: Further studies. Acoust. Soc. Am., 83:1056–1063, 1988.

    Article  Google Scholar 

  11. J. K. Moore. The human auditory brain stem: A comparative view. Hear Res., 29:1–32, 1987.

    Article  Google Scholar 

  12. M. J. Pont and R. I. Damper. A computational model of afferent neural processing from the cochlea to dorsal acoustic stria. J. Acoust. Soc. Am., 89:1213–1228, 1991.

    Article  Google Scholar 

  13. M. J. Pont and R. I. Damper. Exploring the role of the Dorsal Cochlear Nucleus in the Perception of Voice-Onset Time, volume 2. JAI Press, London, 1992.

    Google Scholar 

  14. M.J. Pont. The Role of the Dorsal Cochlear Nucleus in the Perception of Voicing Contrasts in Initial English stop consonants: A Computational Modelling Study. PhD thesis, Department of Electronics and Computer Science, 1990.

    Google Scholar 

  15. L. A. Westerman and R. L. Smith. Rapid and short-termadaptation in auditory responses. Hear. Res., 15:249–260, 1984.

    Article  Google Scholar 

  16. I. A. Winter and A. R. Palmer. Intensity coding in low-frequency auditory-nerve fibres of the guinea pig. Acoust. Soc. Am., 90:1958–1967, 1991.

    Article  Google Scholar 

  17. C. P. Wong and M. J. Pont. Automatic selection of parameters for a computer simulation of extracellular auditory nerve fibre activity. In Proceedings of the ESCA Workshop on the Auditory Basis of Speech Perception, pages 61–64, Keele, UK, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Wong, C.P., Pont, M.J. (1998). Automated Parameter Selection for a Computer Simulation of Auditory Nerve Fibre Activity using Genetic Algorithms. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6492-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6492-1_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83087-1

  • Online ISBN: 978-3-7091-6492-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics