Skip to main content

Is Genetic Programming Dependent on High-level Primitives?

  • Conference paper
Artificial Neural Nets and Genetic Algorithms
  • 380 Accesses

Abstract

The aim of this paper is to refute the claim that the success of genetic programming depends on problem-specific high-level primitives. We therefore apply genetic programming to the λ-calculus, a Turing complete formalism with only two (very low-level) primitives.

Genetic programming is suited to find the predecessor function in the space of λ-definable functions without a priori knowledge. The predecessor function is historically important and documented to be ‘a challenge’ and ‘difficult’ to find.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abbott, 1993. mailing list genetic-programming@cs.stanford.edu.

    Google Scholar 

  2. P.J. Angeline. Evolutionary Algorithms and Emergent Intelligence. PhD thesis, The Ohio State University, 1993.

    Google Scholar 

  3. A. Church. A set of postulates for the foundation of logic. Annals of Math., 33:346–366, 1932.

    Article  MathSciNet  Google Scholar 

  4. A. Church. A set of postulates for the foundation of logic (second paper). Annals of Math., 34:839–864, 1933.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. 1989.

    Google Scholar 

  6. S.G. Handley. The automatic generation of plans for a mobile robot via genetic programming with automatically defined functions. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  7. J. Jannink. Cracking and co-evolving randomizers. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  8. S.C. Kleene. Origins of recursive function theory. Annals of the History of Computing, 3(1), 1981.

    Google Scholar 

  9. J.R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

    MATH  Google Scholar 

  10. G.E. Revesz. Lambda-Calculus, Combinators, and Functional Programming. Cambridge University Press, 1988.

    Google Scholar 

  11. C.W. Reynolds. Evolution of obstacle avoidance behavior: Using noise to promote robust solutions. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  12. G. Spencer. Automatic generation of programs for crawling and walking. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  13. S. Taylor, 1993. mailing list genetic-programming@cs.stanford.edu Sep 9, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Heiss-Czedik, D. (1998). Is Genetic Programming Dependent on High-level Primitives?. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6492-1_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6492-1_89

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83087-1

  • Online ISBN: 978-3-7091-6492-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics