Skip to main content

Invariant Thinning and Distance Transform

  • Conference paper
Theoretical Foundations of Computer Vision

Part of the book series: Computing Supplement ((COMPUTING,volume 11))

  • 170 Accesses

Abstract

Invariant Thinning and Distance Transform. Thinning is a preprocessing method which is applied to binary (i.e. black-and-white) digital (i.e. discretized) images. The goal of thinning is to reduce the sets of black points in the image to “thin” sets while retaining the “topology” of them as well as “form” properties. Usually thinning methods are organized in an iterative way by “peeling off” outer layers of the sets under consideration. This implies that thinning is an extremely time-consuming task. Recently, Neusius and Olszewski [12] proposed a thinning method which is based on a distance transform. This idea is indeed not new (see e.g. [6]), but Neusius and Olszewski were the first to treat it in a systematic way. Since the distance transform can be calculated efficiently by a two-sweep method, this approach looks attractive. The aim of this paper is to show that under certain assumptions a ‘classical’ thinning method [4], which has invariance with respect to motions as a distinctive feature, also can be interpreted as a distance-transform-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcelli, C.: Pattern thinning by contour tracing. Comput. Graphics Image Proc. 17, 130–144 (1981).

    Article  Google Scholar 

  2. Bardtke, K., Berens, H.: Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene. J. Approx. Theory 47, 54–74 (1986).

    Article  MathSciNet  Google Scholar 

  3. Eckhardt, U., Latecki, L., Maderlechner, G.: Irreducible and thin binary sets. 2nd International Workshop on Visual Form, Capri, Italy, May 30-June 2, 1994.

    Google Scholar 

  4. Eckhardt, U., Maderlechner, G.: Invariant thinning. Int. J. Pattern Rec. Art. Intell. 7, 1115–1144 (1993).

    Article  Google Scholar 

  5. Eckhardt, U., Maderlechner, G.: Thinning binary pictures by a labeling procedure. Proceedings 11th IAPR International Conference on Pattern Recognition, The Hague, The Netherlands, August 30-September 3, 1992, Volume III, Conference C: Image, Speech, and Signal Analysis, pp. 582–585. Los Alamitos, Washington, Brussels, Tokyo: IEEE Computer Society Press 1992.

    Google Scholar 

  6. Evers, C., Andersen, J., Maderlechner, G.: Ein neues Verfahren zur euklidischen Skelettierung von Binärbildern. In Mustererkennung 1987. 9. DAGM-Symposium, Braunschweig, 29.9.-1.10. 1987, Proceedings, Informatik-Fachberichte 149 (Paulus, E., ed.), p. 171. Berlin, Heidelberg, New York, Tokyo: Springer. 1987.

    Google Scholar 

  7. Haralick, R. M.: Performance characterization in image analysis: thinning, a case in point. Pattern Rec. Lett. 13, 5–12 (1992).

    Article  Google Scholar 

  8. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-Composed Sets. Comput. Vision Image Underst. 61, 70–83 (1995).

    Article  Google Scholar 

  9. Minsky, M., Papert, S.: Perceptrons. An introduction to computational geometry. Cambridge Mass., London: The MIT Press 1969.

    MATH  Google Scholar 

  10. Motzkin, T.: Sur quelques propriétés caractéristiques des ensembles bornés non convexes. Atti della Reale Accademia Nazionale dei Lincei, Serie sesta, Rendiconti, Classe di Scienze Fisiche, Matematiche e Naturali 21, 773–779 (1935).

    Google Scholar 

  11. Motzkin, T.: Sur quelques propriétés caractéristiques des ensembles convexes. Atti della Reale Accademia Nazionale dei Lincei, Serie sesta, Rendiconti, Classe di Scienze Fisiche, Matematiche e Naturali 21, 562–567 (1935).

    Google Scholar 

  12. Neusius, G., Olszewski, J.: A noniterative thinning algorithm. ACM Trans. Math. Software 20, 5–20 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosenfeld, A.: Digital topology. Amer. Math. 86, 621–630 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. Serra, J.: Image analysis and mathematical morphology. London, New York: Academic Press 1982.

    MATH  Google Scholar 

  15. Serra, J., ed.: Image analysis and mathematical morphology, Vol. 2: Theoretical advances. London, New York: Academic Press 1988.

    Google Scholar 

  16. Yu, Z., Conrad, C., Eckhardt, U.: Regularization of the medial axis transform. In: Theoretical Foundations of Computer Vision 1992, Proceedings of the Vth Workshop 1992, Buckow (Märkische Schweiz), March 30-April 3, 1992, (Mathematical Research, Volume 69) (Klette, R., Kropatsch, W. G., eds.), pp. 13–24. Berlin: Akademie-Verlag 1992.

    Google Scholar 

  17. Yu, Z.: Intrinsic topology of medial axis. In: Mustererkennung 1989. 11. DAGM-Symposium, Hamburg, 2.-4. Oktober 1989. Proceedings. Informatik-Fachberichte 219 (Burkhardt, H., Höhne, K. H., Neumann, B., eds.), pp. 77–81. Berlin, Heidelberg, New York, Tokyo: Springer 1989.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this paper

Cite this paper

Eckhardt, U., Latecki, L. (1996). Invariant Thinning and Distance Transform. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds) Theoretical Foundations of Computer Vision. Computing Supplement, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6586-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6586-7_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82730-7

  • Online ISBN: 978-3-7091-6586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics