Skip to main content

Topological approach to mathematical morphology

  • Conference paper
Advances in Computer Vision

Part of the book series: Advances in Computing Science ((ACS))

  • 166 Accesses

Abstract

For low—bit—rate coding of video sequences, specifically in the context of the MPEG—4 proposal, morphological approaches proved to be highly attractive (see e.g. [16]). During a series of coding experiments performed at Siemens Research Laboratory in München [9] the authors felt that there are some deficiencies of theory which need investigation. The aim of this paper is to sketch a theory which allows to understand the relationships between three classes of discrete concepts, namely discrete topology, discrete morphology and discrete metrics. Mathematical morphology is based on topologies for systems of subsets of a set [13]. The topology of the underlying set enters only indirectly. Therefore such concepts as connectedness of sets can cause difficulties if treated purely morphologically. These conceptual difficulties became especially apparent, when structures and algorithms were used practically which simultaneously involve both subset topologies and connectedness of subsets as is the case e.g. in watershed segmentation [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexandroff, P., Hopf, H.: Topologie, Berlin: Springer 1935.

    Google Scholar 

  2. Brissaud, M.: Les espaces prétopologiques. Comptes rendus, Paris, Série A 280, 705–708 (1975).

    MathSciNet  MATH  Google Scholar 

  3. Čech, E.: Topological Spaces. London: Wiley Interscience 1966.

    MATH  Google Scholar 

  4. Eckhardt, U., Latecki, L.: Digital topology. Hamburger Beiträge zur Angewandten Mathematik, Reihe A, Preprint 89, Oktober 1994.

    Google Scholar 

  5. Engelking, R.: General Topology. Warszawa: Polish Scientific Publ. 1977.

    MATH  Google Scholar 

  6. Herrlich, H.: A concept of nearness. General Topology and its Applications 4, 191–212 (1974)

    Article  MathSciNet  Google Scholar 

  7. Khalimsky E., Kopperman, R., Meyer, P.R,.: Computer graphics and connected topologies on finite ordered sets. Topology and its Applications 36, 1–17 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 45, 141–161 (1989).

    Article  Google Scholar 

  9. Lakämper, R., Seytter, F.: Manipulation objektbasiert codierter Bilder als Anwendungsbeispiel neuer Videostandards. Proc. DAGM, Braunschweig, 1997.

    Google Scholar 

  10. Latecki, L.: Digitale und Allgemeine Topologie in der bildhaften Wissensrepräsentation. St. Augustin: infix 1992.

    Google Scholar 

  11. Latecki, L.J.: On the Relation between Spatial Objects in ℝ2 (ℝ 3) and their Discrete Representations in ℤ 2 (ℤ3). Dordrecht: Kluwer 1997.

    Google Scholar 

  12. Marcus, D., Wyse, F. et al.: A special topology for the integers. Amer. Math. Monthly 77, 85, 1119 (1970).

    Article  MathSciNet  Google Scholar 

  13. Matheron G.: Random Sets and Integral Geometry. New York: Wiley 1975.

    MATH  Google Scholar 

  14. Naimpally, S.A., Warrack. B.D.: Proximity Spaces. Cambridge: University Press 1970.

    Google Scholar 

  15. Rosenfeld, A.: Digital topology. American Mathematical Monthly 86, 621630 (1979).

    Google Scholar 

  16. Salembier, P., Brigger, P., Casas, J.R., Pardäs, M.: Morphological operators for image and video compression. IEEE Transactions on Image Processing 5, 881–898 (1996).

    Article  Google Scholar 

  17. Serra, J.: Image Analysis and Mathematical Morphology. London: Academic Press 1982.

    MATH  Google Scholar 

  18. Serra, J. (ed.): Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. London: Academic Press 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag/Wien

About this paper

Cite this paper

Eckhardt, U., Hundt, E. (1997). Topological approach to mathematical morphology. In: Solina, F., Kropatsch, W.G., Klette, R., Bajcsy, R. (eds) Advances in Computer Vision. Advances in Computing Science. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6867-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6867-7_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83022-2

  • Online ISBN: 978-3-7091-6867-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics