Skip to main content

The Process of Motion Capture: Dealing with the Data

  • Conference paper
Computer Animation and Simulation ’97

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

This paper presents a detailed description of the process of motion capture, whereby sensor information from a performer is transformed into an articulated, hierarchical rigid-body object. We describe the gathering of the data, the real-time construction of a virtual skeleton which a director can use for immediate feedback, and the offline processing which produces the articulated object. This offline process involves a robust statistical estimation of the size of the skeleton and an inverse kinematic optimization to produce the desired joint angle trajectories. Additionally, we discuss a variation on the inverse kinematic optimization which can be used when the standard approach does not yield satisfactory results for the special cases when joint angle consistency is desired between a group of motions. These procedures work well and have been used to produce motions for a number of commercial games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badler, N. I., Hollick, M. J., and Granieri, J. P. Real-time control of a virtual human using minimal sensors. Presence 2, 1 (1993), 82–86.

    Google Scholar 

  2. Badler, N. I., Phillips, C. B., and Webber, B. L. Simulating Humans: Computer Graphics Animation and Control. Oxford University Press, Oxford, UK, 1993.

    MATH  Google Scholar 

  3. Bruderlin, A., and Williams, L. Motion signal processing. In Computer Graphics (Aug. 1995), pp. 97–104. Proceedings of SIGGRAPH 95.

    Google Scholar 

  4. Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic Press, 1981.

    MATH  Google Scholar 

  5. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. Robust Statistics: The Approach Based on Influence Functions. John H. Wiley, New York, 1986.

    Google Scholar 

  6. Hars, A. Masters of motion. Computer Graphics World (Oct. 1996), 26–34.

    Google Scholar 

  7. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’brien, J. F. Animating human athletics. In Computer Graphics (Aug. 1995), pp. 71–78. Proceedings of SIGGRAPH 95.

    Google Scholar 

  8. Houy, D. R. Range of motion in college males. Presented at the Conference of the Human Factors Society, Santa Monica, CA, 1983.

    Google Scholar 

  9. Maestri, G. Capturing motion. Computer Graphics World (1995), 47–51.

    Google Scholar 

  10. Maiocchi, R. 3-D character animation using motion capture. In Interactive Computer Animation, N. Magnetat-Thalmann and D. Thalmann, Eds. Prentice-Hall, London, 1996, pp. 10–39.

    Google Scholar 

  11. Maurel, W., Thalmann, D., Hoffmeyer, P., Beylot, P., Gingins, P., Kalra, P., and Thalmann, N. M. A biomechanical musculoskeletal model of human upper limb for dynamic simulation. In Computer Animation and Simulation ’96 (Aug. 1996), R. Boulic and G. Hégron, Eds., pp. 121–136.

    Chapter  Google Scholar 

  12. Molet, T., Boulic, R., and Thalmann, D. A real time anatomical converter for human motion capture. In Computer Animation and Simulation ’96 (Aug. 1996), R. Boulic and G. Hégron, Eds., pp. 79–94.

    Chapter  Google Scholar 

  13. Perlin, K. Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1, 1(Mar. 1995), 5–15.

    Article  Google Scholar 

  14. Rose, C. F., Guenter B., Bodenheimer, B., and Cohen, M. Efficientgeneration of motion transitions using spacetime constraints. In Computer Graphics (Aug. 1996), pp. 147–154. Proceedings of SIGGRAPH 96.

    Google Scholar 

  15. Witkin, A., and Popović, Z. Motion warping. In Computer Graphics (Aug. 1995), pp. 105–108. Proceedings of SIGGRAPH 95.

    Google Scholar 

  16. Zhao, J., and Badler, N.I. Inverse kinematics positioning using non-linear programming for highly articulated figures. ACM Trans. Gr. 13, 4 (Oct. 1994), 313–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag/Wien

About this paper

Cite this paper

Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J. (1997). The Process of Motion Capture: Dealing with the Data. In: Thalmann, D., van de Panne, M. (eds) Computer Animation and Simulation ’97. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6874-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6874-5_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83048-2

  • Online ISBN: 978-3-7091-6874-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics