Skip to main content

Efficient Visualization of Large—Scale Data on Hierarchical Meshes

  • Conference paper
Visualization in Scientific Computing ’97

Part of the book series: Eurographics ((EUROGRAPH))

  • 209 Accesses

Abstract

A multi-resolution approach is presented for data on a large class of hierarchical and nested grids. It is based on a procedural interface and a set of hierarchical and adaptive visualization methods. Such a method consists of a recursive traversal of mesh elements from the grid hierarchy combined with an adaptive stopping according to some error indicator which is closely related to the visual impression of data smoothness. During this traversal user data is only temporarily and locally addressed on single elements. No in advance mapping onto prescribed formats is necessary. The user only has to supply a set of element access routines as an interface to his specific data structures. As no extra storage is required, also large, economically stored computational grids can be handled on workstations with moderate local memory. Significant examples illustrate the applicability and efficiency on different types of meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cignoni, P., De Floriani, L., Montani, C., Puppo, E., Scopigno, R.: Multiresolution Modeling and Visualization of Volume Data based on Simplicial Complexes, Proceedings of the Visualization’95, 19–26, 1995.

    Google Scholar 

  2. Dyer, D. S.: A dataflow toolkit for visualization, IEEE CG&A 10, No. 4, 60–69, 1990

    Google Scholar 

  3. Giles, M.; Haimes, R.: Advanced interactive visualization for CFD, Computing Systems in Engineering, 1 (10): 51–62, 1990.

    Article  Google Scholar 

  4. Grime, L.: An adaptive grid scheme for the Hamilton-Jacobi-Bellman Equation, to appear in Numer. Math.

    Google Scholar 

  5. Haber, R. B.; Lucas, B.; Collins, N.: A data model for scientific visualization with provisions for regular and irregular grids, Proc. IEEE Visualization ’91

    Google Scholar 

  6. Itoh, T.; Koyamada, K.: Isosurface Generation by Using Extrema Graphs, 77–83, 1994.

    Google Scholar 

  7. Lang, U.; Lang, R.; Riihle, R.: Integration of visualization and scientific calculation in a software system, Proc. IEEE Visualization ’91

    Google Scholar 

  8. Laur, D.; Hanrahan, P.: Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering, ACM Computer Graphics 25 (4), 285–288, 1991.

    Article  Google Scholar 

  9. Lucas, B.; et. al.: An architecture for a scientific visualization system, Proc. IEEE Visualization ’92

    Google Scholar 

  10. Livnat, Y.; Shen, H. W.; Johnson, C. R.: A near optimal isosurface extraction algorithm using the span space, Transaction on Visualization and Computer Graphics, 2 (1), 73–83, 1996.

    Article  Google Scholar 

  11. Lorensen, W.E.; Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm, ACM Computer Graphics 21 (4), 163–169, 1987.

    Article  Google Scholar 

  12. Ohlberger, M.; Rumpf, M.: Hierarchical and adaptive visualization on nested grids, Mathematische Fakultät, Universität Freiburg, Preprint 22, 1996, to appear in Computing

    Google Scholar 

  13. Rumpf, M.; Schmidt, A.; Siebert, K. G.: Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines, Computer Graphics Forum 15 (2), 129–141, 1996.

    Article  Google Scholar 

  14. Shen, H.-W.; Johnson, C.R.: Sweeping Simplices: A fast isosurface extraction algorithm for unstructured grids, Proceedings of the Visualization’95, 143–150, 1995.

    Google Scholar 

  15. Treinish, L. A.: Data structures and access software for scientific visualization, Computer Graphics 25, 104–118, 1991

    Google Scholar 

  16. Upson, C.; et. al.: The Application Visualization System: A computational environment for scientific visualization, IEEE CG&A 9, No. 4, 30–42, 1989

    Google Scholar 

  17. Wilhelms, J.;van Gelder, A.: Octrees for faster isosurface generation, ACM Trans. Graph. 11 (3), 201–227, 1992.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag/Wein

About this paper

Cite this paper

Neubauer, R., Ohlberger, M., Rumpf, M., Schwörer, R. (1997). Efficient Visualization of Large—Scale Data on Hierarchical Meshes. In: Lefer, W., Grave, M. (eds) Visualization in Scientific Computing ’97. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6876-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6876-9_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83049-9

  • Online ISBN: 978-3-7091-6876-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics