Skip to main content

Virtual Reality and the Link between Design and Engineering Analysis

  • Conference paper
Virtual Environments ’98

Part of the book series: Eurographics ((EUROGRAPH))

  • 132 Accesses

Abstract

The pressure for companies in the automotive industry to remain competitive has led to the adoption of concurrent engineering to reduce the lead time for new products. Concurrent engineering is a systematic approach to the integrated concurrent design of products and related processes. When using concurrent engineering, specialist knowledge and expertise from downstream tasks of a design and engineering process are introduced during the early phases of product development. Since the largest percentage of design and manufacturing costs are allocated during the concept definition stage of a project, decisions made during this early stage should be supported by all means, including those of information technology. Since CAD and CAE systems are widely used in the automotive design and development process, large amounts of 3-dimensional digital product data are available. Nevertheless, physical prototypes still play an important role, their benefits compared to digital models arising mainly from their spatial presence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beier, K.-P., Virtual Reality in Automotive Design and Manufacturing, The University of Michigan, Virtual Reality Laboratory, Dept. of Naval Architecture and Marine Engineering, April 1994.

    Google Scholar 

  • Bryson, S., Levit, C., The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Unsteady Flows, NASA Ames Research Center, Technical Report RNR-92-013, Oct. 1991.

    Google Scholar 

  • Bryson, S., Approaches to the Successful Design and Implementation of VR Applications, SIGGRAPH 95.

    Google Scholar 

  • Dai, F., et al., Virtual Prototyping Examples for Automotive Industries, Virtual Reality World’ 96, Stuttgart, Germany.

    Google Scholar 

  • Kuschfeldt, S., Holzner, M., Sommer, O., Ertl, Th., Efficient Visualization of Crash-Worthiness Simulations, IEEE Computer Graphics and Applications, 1998.

    Google Scholar 

  • Kuschfeldt, S., Schulz, M., Reuding, Th., Ertl, Th., Holzner, M., Visualizations of Crashworthiness Simulations using Virtual Reality Techniques, Proc. International Conference on High Performance Computing in Automotive Design, Engineering and Manufacturing, Paris, 1996.

    Google Scholar 

  • Schulz, M., Einsatz von Virtual Reality Techniken zur Darstellung von Ergebnissen der Karosserieberechnung, Proc. VisEng’ 97, Rechenzentrum Universität Stuttgart, Germany, 1997.

    Google Scholar 

  • Schulz, M., Reuding, Th., Ertl, Th., Crashing in Cyberspace — Evaluating Structural Behaviour of Car Bodies in a Virtual Environment, Proc. IEEE Virtual Reality Annual International Symposium (VRAIS’ 98), Atlanta, 1998.

    Google Scholar 

  • Schulz, M., Zimmermann, E., Reuding, Th., Ertl, Th., From High-End VR to PC-based VRML Viewing: Supporting the Car Body Development Process by Adapted Virtual Environments, Proc. CGIM’98, IASTED, Halifax, Canada, 1998.

    Google Scholar 

  • Yeh, T., P., Vance, J., M., Combining Sensitivity Methods, Finite Element Analysis and Free-Form Deformation to Facilitate Structural Shape Design in a Virtual Environment, Proc. 23rd ASME Design Automation Conference, Sacramento, CA. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Reuding, T., Schulz, M. (1998). Virtual Reality and the Link between Design and Engineering Analysis. In: Göbel, M., Landauer, J., Lang, U., Wapler, M. (eds) Virtual Environments ’98. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7519-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7519-4_27

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83233-2

  • Online ISBN: 978-3-7091-7519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics