Skip to main content

Selecting the Best Significant Fragment to the Incremental Heteroassociative Neural Network (RHI)

  • Conference paper
Artificial Neural Nets and Genetic Algorithms

Abstract

The generality of the artificial neural networks models infers the requests based in the totality of the characteristics of the patterns. The RHI model infers just with a limited set of this characteristics, the significant fragment. This reason make RHI really appropriated by resolution of control and active vision problem. Although RHI model present high sensibility to distortion. In this paper it is developed the formalism to obtain the significant fragment in such a way it improve the noise tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. García-Chamizo, J.M.;Crespo Lorente,A. “Redes Neuronales Heteroasociativas Increméntales”. IFIP Congress’92, Septiembre 1992

    Google Scholar 

  2. García-Chamizo, J.M.; Crespo-Lorente, A.; Rizo Aldeguer,R.. “Extracción de fragmentos significativos de patrones para su posterior reconocimiento mediante Redes Neuronales RHI”. Jornadas sobre Redes Neuronales 26–30 Octubre 1992. Centro Nacional de Microelectrónica (CSIC). Instituto de Neurociencias (UA).

    Google Scholar 

  3. García-Chamizo, J.M.; Crespo-Lorente, A.; Rizo-Aldeguer, R. “Output Pattern Recalling Aided By Themselves: Incremental Heteroassociative Networks”. Proceedings of the IJCNN, Beijing, November 1992

    Google Scholar 

  4. García-Chamizo. “Semicoberturas heterogéneas de regiones bidimensionales morfológicamente no restringidas. Modelado conexionista aplicado”. Doctoral Dissertation, February, 1994

    Google Scholar 

  5. Garcia Chamizo, J.M.; Mora Pascual, J.; Rizo Aldeguer, R.; Ledesma Latorre, B. “An incidence angle detection system for automatic assembly tools using the RHI network model”. IEEE IAS International Conference on Industrial Automation and Control, Hyderabad (India ), 1995.

    Google Scholar 

  6. Grossberg, S. (editor). “The Adaptive Brain”. Elsevier Science Publishing Co., Inc, 1987

    Google Scholar 

  7. Ibarra Pico, F; Garcia Chamizo, J.M. “A Generalized Bidirectional Associative Memory with a Hidden Orthogonal Layer”. ICANN’94, Sorrento, May 1994

    Google Scholar 

  8. Kandel, E. R.; Schwart, J. H. “Principles of Neural Science”. Elsevier Science Publishing Co., Inc., 1985.

    Google Scholar 

  9. Kohomen, T. “Self-Organization and Associative Memory”. Springer-Verlag, 2nd. edition, 1988

    Google Scholar 

  10. Kosko, B. “Adaptive Bidirectional Associative Memories”. Applied Optics, vol 26, n 23, Dec. 1987

    Google Scholar 

  11. Kosko, B. “Bidirectional Associative Memories ”. IEEE Transactions on Systems, Man & Cybernetics, vol 18, n1, Jan./Feb. 1988

    Google Scholar 

  12. Lancaster, P. & Tismenetsky, M. “The Theory of Matrices”. Academic Press, 1985

    Google Scholar 

  13. Pao, Y. “Adaptive Pattern Recognition and Neural Networks”. Addison-Wesley Publishing Company, Inc, 1989

    MATH  Google Scholar 

  14. Torregrosa, V. “Modelo Neuronal de Memoria Asociativa Ortonomalizada Adaptativa”. P.F.C. U.P.V., 1993

    Google Scholar 

  15. W. Thomas Miller,III;Richard S.Sutton; Paul I. Werbos. “Neural Networks For Control”. Institute of Technology. Massachusetts, 1990

    Google Scholar 

  16. Zurada, J.M. “Introduction to Artificial Neural Systems”. West Publishing Company, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

García Chamizo, J.M., Satorre Cuerda, R., Ibarra Picó, F., Cuenca Asensi, S. (1995). Selecting the Best Significant Fragment to the Incremental Heteroassociative Neural Network (RHI). In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7535-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7535-4_49

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82692-8

  • Online ISBN: 978-3-7091-7535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics