Skip to main content

Planning Behaviors of Modular Robots with Coherent Structure using Randomized Method

  • Conference paper
Distributed Autonomous Robotic Systems 6

Abstract

A behavior planning method is presented for reconfigurable modular robots with coherent structure using a randomized planning. Coherent structure is introduced to cope with difficulty in planning of many degrees of freedom, in terms of control system and robot configuration. This is realized by a phase synchronization mechanism together with symmetric robot configuration, which enables the robot to generate various coherent dynamic motions. The parameters of control systems are explored using a randomized planning method called rapidly exploring random trees (RRTs). The RRT planner has an advantage of simple implementation as well as possibility of integrating differential constraints. The dynamic robot motion is thus planned and preliminary simulation results are shown to demonstrate the proposed planning scheme can generate appropriate behaviors according to environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Fukuda and S. Nakagawa(1998) Approach to the dynamically reconfigurable robotic system, Journal of Intelligent and Robot Systems, 1, 55/72.

    Google Scholar 

  2. S. Murata, et al (1994) Self-assembling machine, Proc. 1994 IEEE Int. Conf. on Robotics and Automation, 441/448.

    Google Scholar 

  3. Autonomous Robots (2001) Special issue on self-reconfigurable robots, 10–1.

    Google Scholar 

  4. IEEE/ASME Trans, on Mechatronics (2002) Special issue on reconfigurable robots, 7–4.

    Google Scholar 

  5. Science (2003) Shape Shifters Thread a Daunting Path Toward Reality, 301, 754/756.

    Google Scholar 

  6. A. Kamimura, et al (2003) Automatic Locomotion Pattern Generation for Modular Robots, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, 2003.

    Google Scholar 

  7. K. Kotay and D. Rus(1998) “Motion Synthesis for the Self-Reconfigurable Molecule,” Proc. 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 843/851.

    Google Scholar 

  8. E. Yoshida, et al (1999) A Distributed Method for Reconfiguration of 3-D homogeneous structure, Advanced Robotics, 13-4, 363/380.

    Google Scholar 

  9. C. Ünsal, et al.: “A modular self-reconfigurable bipartite robotic system: Implementation and Motion Planning,” Autonomous Robots, 10-1, 23/40.

    Google Scholar 

  10. M. Yim et al (2001) “Distributed Control for 3D Metamorphosis,” Autonomous Robots 10-1, 41/56.

    Google Scholar 

  11. D. Rus and M. Vona (2001) Crystalline Robots: Self-reconfiguration with Compressible Unit Modules, Autonomous Robots, 10-1, 107/124.

    Google Scholar 

  12. E. Yoshida, et al (2002) A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments, Int. J. Robotics Research, 21-10, 903/916.

    Google Scholar 

  13. Y. Zhanget al (2003) Scalable and Reconfigurable Configurations and Locomotion Gaits for Chain-type Modular Reconfigurable Robots Proc. 2003 IEEE Int. Conf. on Computational Intelligence in Robotics and Automation (CIRA2003).

    Google Scholar 

  14. S. Murata, et al (2002) M-TRAN: Self-reconfigurable Modular Robotic System, IEEE/ASME Transactions on Mechatronics, 7-4, 431/441.

    Google Scholar 

  15. S. LaValle and J. Kuffner (2001) Rapidly-Exploring Random Trees: Progress and Prospects, InB. R. Donald, K. M. Lynch, and D. Rus, eds., Algorithmic and Computational Robotics: New Directions, 293/308, A K Peters, Wellesley.

    Google Scholar 

  16. G. Taga (1995) A model of the Neuro-Musculo-Skeletal System for Human Locomotion II / Real-Time Adaptability under Various Constraints,” Biolog. Cybern., 73, 113/121.

    Google Scholar 

  17. H. Kimura, et al (1999) Realization of dynamic walking and running of the quadruped using neural oscillator, Autonomous Robots, 7-3, 247/258.

    Google Scholar 

  18. Hiroaki Yamaguchi, et al (2001) A distributed control scheme for multiple robotic vehicles to make group formations, Robotics and Autonomous Systems, 36, 125/147.

    Article  Google Scholar 

  19. S. Kokaji, et al (1996) Clock synchronization algorithm for a distributed Autonomous System, J. Robotics and Mechatronics, 8-5, 317/328.

    Google Scholar 

  20. C. Eldershaw and M. Yim (2001) Motion planning of legged vehicles in an unstructured environment, Proc. 2001 Int. Conf. on Robotics and Automation, 3383/3389.

    Google Scholar 

  21. H. Yuasa and M. Ito (1990) Coordination of Many Oscillators and Generation of Locomotory Patterns, Biol. Cybern., 63, 177/184

    Article  Google Scholar 

  22. H. Støyet al (2002) Using Role Based Control to Produce Locomotion in Chain-Type Self-Reconfigurable Robots IEEE Trans, on Mechatronics

    Google Scholar 

  23. J. Kuffner and S. LaValle (2000) RRT-Connect: an dfficient approach to single-query path planning, Proc. 2000 IEEE Int. Conf. on Roboics and Automation, 995/1001.

    Google Scholar 

  24. S. LaValle and J. Kuffner (1999) Randomized kinodynamic planning, Proc. 1999 IEEE Int. Conf. on Roboics and Automation 413/419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Yoshida, E., Kurokawa, H., Kamimura, A., Murata, S., Tomita, K., Kokaji, S. (2007). Planning Behaviors of Modular Robots with Coherent Structure using Randomized Method. In: Alami, R., Chatila, R., Asama, H. (eds) Distributed Autonomous Robotic Systems 6. Springer, Tokyo. https://doi.org/10.1007/978-4-431-35873-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-35873-2_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-35869-5

  • Online ISBN: 978-4-431-35873-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics