Skip to main content

Functional Sized Population Magnetic Optimization Algorithm

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

Abstract

Magnetic Optimization Algorithm (MOA) is a recently novel optimization algorithm inspired by the principles of magnetic field theory whose possible solutions are magnetic particles scattered in the search space. In order improve the performance of MOA, a Functional Size population MOA (FSMOA) is proposed here. To find the best function for the size of the population, several functions for MOA are considered and investigated and the best parameters for the functions will be derived. In order to test the proposed algorithm and operators, the proposed algorithm will be compared with GA, PSO, QEA and saw-tooth GA on 14 numerical benchmark functions. Experimental results show that the proposed algorithm consistently has a better performance than those of other algorithms in most benchmark function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tayarani-N, M.H., Akbarzadeh-T, M.R.: Magnetic Optimization Algorithm, A New Synthesis. In: IEEE World Conference on Computational Intelligence (2008)

    Google Scholar 

  2. Koumousis, V.K., Katsaras, C.P.: A saw-tooth Genetic Algorithm Combining the Effects of Variable Population Size and Reinitialization to Enhance Performance. IEEE Trans. Evol. Comput. 10, 19–28 (2006)

    Article  Google Scholar 

  3. Tayarani-N, M.H., Akbarzadeh-T, M.R.: A sinusoid Size Ring Structure Quantum Evolutionary Algorithm. In: IEEE International Conference on Cybernetics and Intelligent Systems Robotics, Automation and Mechanics (2008)

    Google Scholar 

  4. Wang, D.L.: A Study on the Optimal Population Size of Genetic Algorithm. In: Proceedings of the 4th World Congress on Intelligent Control and Automation (2002)

    Google Scholar 

  5. Shi, X.H., Wan, L.M., Lee, H.P., Yang, X.W., Wang, L.M., Liang, Y.C.: An Improved Genetic Algorithm with Variable Population Size and a PSO-GA Based Hybrid Evolutionary Algorithm. In: International Conference on Machine Learning and Cybernetics (2003)

    Google Scholar 

  6. Jun, Q., Li-Shan, K.: A Novel Dynamic Population Based Evolutionary Algorithm for Revised Multimodal Function Optimization Problem. In: Fifth World Congress on Intelligent Control and Automation (2004)

    Google Scholar 

  7. Zhong, W., Liu, J., Xue, M., Jiao, L.: A Multi-agent Genetic Algorithm for Global Numerical Optimization. IEEE Trans. Sys., Man and Cyber. 34, 1128–1141 (2004)

    Article  Google Scholar 

  8. Khorsand, A.R., Akbarzadeh-T., M.R.: Quantum Gate Optimization in a Meta-Level Genetic Quantum Algorithm. In: IEEE International Conference on Systems, Man and Cybernetics (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Torshizi, M., Tayarani-N., M. (2010). Functional Sized Population Magnetic Optimization Algorithm. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_36

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics