Skip to main content

Animation of Physical Systems from Geometric, Kinematic and Dynamic Models

  • Chapter
Modeling in Computer Graphics

Part of the book series: IFIP Series on Computer Graphics ((IFIP SER.COMP.))

  • 141 Accesses

Abstract

This paper presents the design of an extensible animation system in which rigid and deformable multibody systems are animated from their geometric models and the specification of kinematic and dynamic constraints. Theoretical, numerical and practical aspects of the system implementation are presented. One of its main features is the automatic derivation of the symbolic form of the motion equations from a physical model created interactively. This process is detailed by means of a simple example. Besides achieving motion control by the application of direct dynamics, the system provides animation of deformable objects, automatic motion control from a specified motion without having to determine the forces required to produce this desired effect, and object collision detection and response. Experimental results are presented to illustrate each type of animation control. Finally, the applicability of our animation system to scientific simulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong, W., and Green, M. The dynamics of articulated rigid bodies for the purposes of animation. The Visual Computer 1, 4 (Dec. 1985), 231–240.

    Article  Google Scholar 

  2. Arnaldi, B., Dumont, G., and Hégron, G. Dynamics and unification of animation control. The Visual Computer, 5 (1989), 22–31.

    Article  MATH  Google Scholar 

  3. Arnaldi, B., Dumont, G., Hégron, G., Magnenat-Thalmann, N., and Thalmann, D. Animation control with dynamics. In Computer Animation′89, State-of-the-art in Computer Animation (1989), Springer-Verlag, Ed., Computer Graphics International, pp. 113–123.

    Google Scholar 

  4. Bamberger, Y. Mécanique de l’ingénieur 1: systèmes de corps rigides. Vol. 1, Hermann, 293 rue Lecourbe 75015 Paris, 1981.

    Google Scholar 

  5. Barzel, R., and Barr, A. H. A modeling system based on dynamic constraints. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 179–188.

    Google Scholar 

  6. Chace, M. A. Methods and experience in computer aided design of large-displacement mechanical systems. In Computer Aided Analysis and Optimisation of Mechanical System Dynamics, E. Haug, Ed., Springer-Verlag, 1984, pp. 233–259.

    Google Scholar 

  7. Deyo, R., Briggs, J. A., and Doenges, P. Getting graphics in gear: graphics and dynamics in driving simulation. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 317–326.

    Google Scholar 

  8. Dumont, G., Arnaldi, B., and Hégron, G. Mechanics of solids for computer animation. In PIXIM′89 (Sep. 1989), pp. 293–307.

    Google Scholar 

  9. Fournier, A., Bloomenthal, J., Oppenheimer, P., Reeves, W., and Smith, A. The modeling of natural phenomena. ACM SIGGRAPH′87 Courses Notes 17 (1987).

    Google Scholar 

  10. Fournier, A., and Reeves, W. A simple model of ocean waves. In SIGGRAPH′86 (Aug. 1986), Computer Graphics, p. 75.

    Google Scholar 

  11. Gascuel, M. P. Osea: un nouveau modèle de matière pour traiter les collisions entre objets déformables. In PIXIM′89 (Sep. 1989), pp. 309–323.

    Google Scholar 

  12. Germain, P. Mécanique. Vol. 1, Ecole Polytechnique, 91128 Palaiseau Cedex, 1986.

    Google Scholar 

  13. Hahn, J. K. Realistic animation of rigid bodies. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 299–308.

    Google Scholar 

  14. Hégron, G., Arnaldi, B., and Dumont, G. Toward general animation control. In C.G.I′88 (May 1988), Springer-Verlag, Ed., Computer Graphics International, Geneva, pp. 54–63.

    Google Scholar 

  15. Miller, G. S. P. The motion dynamics of snakes and worms. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 169–178.

    Google Scholar 

  16. Moore, M., and Wilhelms, J. Collision detection and response for computer animation. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 289–298.

    Google Scholar 

  17. Orlandea, N. Development and Application of Node-Analogous Sparsity-Oriented Methods for Simulation of Mechanical Dynamic System. PhD thesis, University of Michigan, 1973.

    Google Scholar 

  18. Platt, J. C., and Barr, A. H. Constraints methods for flexible models. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 279–288.

    Google Scholar 

  19. Reeves, W. Particle systems: a technique for modelling a class of fuzzy objects. In SIGGRAPH′83 (July 1983), Computer Graphics, pp. 359–376.

    Google Scholar 

  20. Schielen, W. Computer generation of equations of motion. In Computer Aided Analysis and Optimisation of Mechanical System Dynamics, E. Haug, Ed., Springer-Verlag, 1984, pp. 183–215.

    Google Scholar 

  21. Terzopoulos, D., and Fleischer, K. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. In SIGGRAPH′88 (Aug. 1988), Computer Graphics, pp. 269–278.

    Google Scholar 

  22. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically deformable models. In SIG-GRAPH′87 (July 1987), Computer Graphics, pp. 205–214.

    Google Scholar 

  23. Terzopoulos, D., and Witkin, A. Physically based models with rigid and deformable components. In Graphics Interface′88 (June 1988).

    Google Scholar 

  24. Touzot, G., and Dhatt, G. Une Présentation de la Méthode des Eléments Finis. Maloine S.A Editeur, 27 rue de l’Ecole de Medecine, 75006 Paris, 1984.

    Google Scholar 

  25. Wilhelms, J., and Barsky, B. Using dynamic analysis to animate articulated bodies such as humans and robots. In Graphics interface′85 (May 1985), pp. 97–104.

    Google Scholar 

  26. Witkin, A., Fleischer, K., and Barr, A. Energy constraints on parameterized models. In SIGGRAPH′87 (July 1987), Computer Graphics, pp. 225–232.

    Google Scholar 

  27. Witkin, A., and Kass, M. Spacetime constraints. In SIGGRAPH′88 (Aug. 1988), pp. 159–168.

    Google Scholar 

  28. Wittenburg, J. Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart, 1977.

    MATH  Google Scholar 

  29. Zienkiewicz, O. C. The Finite Element Method in Engineering Science, third edition. Mc Graw-Hill, London, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 IFIP International Federation for Information Processing, 16 place Longemalle, CH-1204 Geneva, Switzerland

About this chapter

Cite this chapter

Arnaldi, B., Dumont, G., Hegron, G. (1991). Animation of Physical Systems from Geometric, Kinematic and Dynamic Models. In: Kunii, T.L. (eds) Modeling in Computer Graphics. IFIP Series on Computer Graphics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68147-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68147-2_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68149-6

  • Online ISBN: 978-4-431-68147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics