Abstract
We demonstrate a computing system based on an amoeba of a true slime mold Physarum capable of producing rich spatiotemporal oscillatory behavior. Our system operates as a neurocomputer because an optical feedback control in accordance with a recurrent neural network algorithm leads the amoeba’s photosensitive branches to search for a stable configuration concurrently. We show our system’s capability of solving the traveling salesman problem. Furthermore, we apply various types of nonlinear time series analysis to the amoeba’s oscillatory behavior in the problem-solving process. The results suggest that an individual amoeba might be characterized as a set of coupled chaotic oscillators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern. Biophys. Chem. 84, 195–204 (2000)
Nakagaki, T., Yamada, H., Toth, A.: Maze-Solving by an Amoeboid Organism. Nature 407, 470 (2000)
Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107, 1–5 (2004)
Takamatsu, A., Fujii, T., Endo, I.: Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85, 2026–2029 (2000)
Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)
Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D 223, 180–188 (2006)
Aono, M., Gunji, Y.-P.: Beyond input-output computings: Error-driven emergence with parallel non-distributed slime mold computer. BioSystems 71, 257–287 (2003)
Aono, M., Hara, M.: Dynamic Transition among Memories on Neurocomputer Composed of Amoeboid Cell with Optical Feedback. In: Proceedings of The 2006 International Symposium on Nonlinear Theory and its Applications, pp. 763–766 (2006)
Aono, M., Hara, M.: Amoeba-based Nonequilibrium Neurocomputer Utilizing Fluctuations and Instability. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 41–54. Springer, Heidelberg (2007)
Aono, M., Hara, M.: Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91, 83–93 (2008)
Aono, M., Hara, M., Aihara, K.: Amoeba-based Neurocomputing with Chaotic Dynamics. Commun. ACM 50(9), 69–72 (2007)
Aono, M., Hara, M., Aihara, K., Munakata, T.: Amoeba-Based Emergent Computing: Combinatorial Optimization and Autonomous Meta-Problem Solving. International Journal of Unconventional Computing (in press)
Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum logical-computing. BioSystem 73, 45–55 (2004)
Tsuda, S., Zauner, K.P., Gunji, Y.-P.: Robot Control with Biological Cells. In: Proceedings of Sixth International Workshop on Information Processing in Cells and Tissues, pp. 202–216 (2005)
Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: A biologically inspired method of road-network navigation. Physica A 363, 115–119 (2006)
Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters (in press)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and co., New York (1979)
Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (2003)
Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University of Michigan Press, Ann Arbor (1975); (2nd edn.: MIT Press, 1992)
Hopfield, J.J., Tank, D.W.: Computing with Neural Circuits: A model. Science 233, 625–633 (1986)
Ueda, T., Mori, Y., Nakagaki, T., Kobatake, Y.: Action spectra for superoxide generation and UV and visible light photoavoidance in plasmodia of Physarum polycephalum. Photochem. Photobiol. 48, 705–709 (1988)
Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)
Nakamura, T., Small, M.: Small-shuffle Surrogate Data: Testing for Dynamics in Fluctuating Data with Trends. Phys. Rev. E 72, 056216 (2005)
Nakamura, T., Small, M., Hirata, Y.: Testing for Nonlinearity in Irregular Fluctuations with Long-term Trends. Phys. Rev. E 74, 026205 (2006)
Luo, X., Nakamura, T., Small, M.: Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series. Phys. Rev. E 71, 026230 (2005)
Thiel, M., Romano, M.C., Kurths, J., Rolfs, M., Kliegl, R.: Twin Surrogates to Test for Complex Synchronisation. Europhys. Lett. 75, 535–541 (2006)
Bandt, C., Pompe, B.: Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 88, 174102 (2002)
Rosetnstein, M.T., Collins, J.J., De Luca, C.J.: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D 65, 117–134 (1993)
Hegger, R., Kantz, H., Schreiber, T.: Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package. Chaos 9, 413–435 (1999)
Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Phys. Lett. A 144, 333–340 (1990)
Hasegawa, M., Ikeguchi, T., Aihara, K.: Combination of Chaotic Neurodynamics with the 2-opt Algorithm to Solve Traveling Salesman Problems. Phys. Rev. Lett. 79, 2344–2347 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Tokyo
About this paper
Cite this paper
Aono, M., Hirata, Y., Hara, M., Aihara, K. (2009). Combinatorial Optimization by Amoeba-Based Neurocomputer with Chaotic Dynamics. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_1
Download citation
DOI: https://doi.org/10.1007/978-4-431-88981-6_1
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-88980-9
Online ISBN: 978-4-431-88981-6
eBook Packages: Computer ScienceComputer Science (R0)