Skip to main content

Combinatorial Optimization by Amoeba-Based Neurocomputer with Chaotic Dynamics

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 1))

  • 455 Accesses

Abstract

We demonstrate a computing system based on an amoeba of a true slime mold Physarum capable of producing rich spatiotemporal oscillatory behavior. Our system operates as a neurocomputer because an optical feedback control in accordance with a recurrent neural network algorithm leads the amoeba’s photosensitive branches to search for a stable configuration concurrently. We show our system’s capability of solving the traveling salesman problem. Furthermore, we apply various types of nonlinear time series analysis to the amoeba’s oscillatory behavior in the problem-solving process. The results suggest that an individual amoeba might be characterized as a set of coupled chaotic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern. Biophys. Chem. 84, 195–204 (2000)

    Article  Google Scholar 

  2. Nakagaki, T., Yamada, H., Toth, A.: Maze-Solving by an Amoeboid Organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  3. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107, 1–5 (2004)

    Article  Google Scholar 

  4. Takamatsu, A., Fujii, T., Endo, I.: Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85, 2026–2029 (2000)

    Article  Google Scholar 

  5. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)

    Article  Google Scholar 

  6. Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D 223, 180–188 (2006)

    Article  Google Scholar 

  7. Aono, M., Gunji, Y.-P.: Beyond input-output computings: Error-driven emergence with parallel non-distributed slime mold computer. BioSystems 71, 257–287 (2003)

    Article  Google Scholar 

  8. Aono, M., Hara, M.: Dynamic Transition among Memories on Neurocomputer Composed of Amoeboid Cell with Optical Feedback. In: Proceedings of The 2006 International Symposium on Nonlinear Theory and its Applications, pp. 763–766 (2006)

    Google Scholar 

  9. Aono, M., Hara, M.: Amoeba-based Nonequilibrium Neurocomputer Utilizing Fluctuations and Instability. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 41–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Aono, M., Hara, M.: Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91, 83–93 (2008)

    Article  Google Scholar 

  11. Aono, M., Hara, M., Aihara, K.: Amoeba-based Neurocomputing with Chaotic Dynamics. Commun. ACM 50(9), 69–72 (2007)

    Article  Google Scholar 

  12. Aono, M., Hara, M., Aihara, K., Munakata, T.: Amoeba-Based Emergent Computing: Combinatorial Optimization and Autonomous Meta-Problem Solving. International Journal of Unconventional Computing (in press)

    Google Scholar 

  13. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum logical-computing. BioSystem 73, 45–55 (2004)

    Article  Google Scholar 

  14. Tsuda, S., Zauner, K.P., Gunji, Y.-P.: Robot Control with Biological Cells. In: Proceedings of Sixth International Workshop on Information Processing in Cells and Tissues, pp. 202–216 (2005)

    Google Scholar 

  15. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: A biologically inspired method of road-network navigation. Physica A 363, 115–119 (2006)

    Article  Google Scholar 

  16. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters (in press)

    Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and co., New York (1979)

    MATH  Google Scholar 

  18. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. University of Michigan Press, Ann Arbor (1975); (2nd edn.: MIT Press, 1992)

    Google Scholar 

  20. Hopfield, J.J., Tank, D.W.: Computing with Neural Circuits: A model. Science 233, 625–633 (1986)

    Article  Google Scholar 

  21. Ueda, T., Mori, Y., Nakagaki, T., Kobatake, Y.: Action spectra for superoxide generation and UV and visible light photoavoidance in plasmodia of Physarum polycephalum. Photochem. Photobiol. 48, 705–709 (1988)

    Article  Google Scholar 

  22. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  23. Nakamura, T., Small, M.: Small-shuffle Surrogate Data: Testing for Dynamics in Fluctuating Data with Trends. Phys. Rev. E 72, 056216 (2005)

    Article  Google Scholar 

  24. Nakamura, T., Small, M., Hirata, Y.: Testing for Nonlinearity in Irregular Fluctuations with Long-term Trends. Phys. Rev. E 74, 026205 (2006)

    Article  Google Scholar 

  25. Luo, X., Nakamura, T., Small, M.: Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series. Phys. Rev. E 71, 026230 (2005)

    Article  Google Scholar 

  26. Thiel, M., Romano, M.C., Kurths, J., Rolfs, M., Kliegl, R.: Twin Surrogates to Test for Complex Synchronisation. Europhys. Lett. 75, 535–541 (2006)

    Article  Google Scholar 

  27. Bandt, C., Pompe, B.: Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  28. Rosetnstein, M.T., Collins, J.J., De Luca, C.J.: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D 65, 117–134 (1993)

    Article  MathSciNet  Google Scholar 

  29. Hegger, R., Kantz, H., Schreiber, T.: Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package. Chaos 9, 413–435 (1999)

    Article  MATH  Google Scholar 

  30. Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Phys. Lett. A 144, 333–340 (1990)

    Article  MathSciNet  Google Scholar 

  31. Hasegawa, M., Ikeguchi, T., Aihara, K.: Combination of Chaotic Neurodynamics with the 2-opt Algorithm to Solve Traveling Salesman Problems. Phys. Rev. Lett. 79, 2344–2347 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Tokyo

About this paper

Cite this paper

Aono, M., Hirata, Y., Hara, M., Aihara, K. (2009). Combinatorial Optimization by Amoeba-Based Neurocomputer with Chaotic Dynamics. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88981-6_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88980-9

  • Online ISBN: 978-4-431-88981-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics