Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 130))

Abstract

Application of Ti aluminide is limited due to its poor ductility at room temperature. Over the last two decades several studies have been conducted and large amount of data have been generated. These data have been utilized in the present work to obtain optimized set of parameters through Mamdani fuzzy inference system. Ductility database were prepared and three parameters viz. alloy type, grain size and heat treatment cycle were selected for modeling. Additionally, ductility data were generated from literature for training and validation of models on the basis of linearity and considering the primary effect of these three parameters. All the data have been used to frame the fuzzy rules with its membership values. Performance of the models was evaluated, which shows model has better agreement with the data generated from observed data. Possibility of improving ductility more than 5% is observed for multicomponent alloy with grain size of 10-50μm using a multistep heat treatment cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipsitt, H.A.: High Temperature Ordered Intermetallic Alloys. In: Koch, C.C., Liu, C.T., Stolloff, N.S. (eds.) MRS, vol. 39, p. 351 (1985)

    Google Scholar 

  2. Taub, A.I., Fleischer, R.L.: Science 243, 616 (1989)

    Article  Google Scholar 

  3. Huang, S.C., Cheshut, J.C.: Gamma Ti Al and its alloys-Intermetallic compounds. In: Westbrook, J.H., Fleischer, R.L. (eds.), vol. 2, p. 73. John Wiley & Sons Ltd. (1994)

    Google Scholar 

  4. Kattener, U.R., Lin, J.C., Chang, Y.A.: Metall. Trans. 23A, 2081 (1992)

    Google Scholar 

  5. Kim, Y.W., Froes, F.H.: High temperature aluminides and Intermetallics. In: Whang, S.H., Liu, C.T., Pope, D.P., Stiegler, J.O. (eds.), p. 485. The Minerals, Metals & Materials Society (1990)

    Google Scholar 

  6. Kim, Y.W., Froes, F.H.: High temperature aluminides and Intermetallics. In: Whang, S.H., Liu, C.T., Pope, D.P., Stiegler, J.O. (eds.), p. 465. The Minerals, Metals & Materials Society (1990)

    Google Scholar 

  7. Huang, S.C., Hall, E.L., Shih, D.S.: ISIJ Int. 10(31), 1100 (1991)

    Article  Google Scholar 

  8. Kim, Y.W.: Acta Metall. Mater. 40(6), 1121 (1992)

    Article  Google Scholar 

  9. Huang, S.C., Hall, E.L.: Acta Metall. Mater. 39(6), 1053 (1991)

    Article  Google Scholar 

  10. Wang, J.N., Xie, K.: Intermetallics 8, 545 (2000)

    Article  MATH  Google Scholar 

  11. Seetharaman, V., Semiatin, S.L.: Mater. Sci. & Engg. A 299A, 195 (2001)

    Article  Google Scholar 

  12. Beschliesser, M., Chatterjee, A., Lorich, A., Knabl, W., Kestler, H., Dehm, G., Clemens, H.: Mater. Sci. and Engg. A 329-331, 124 (2002)

    Article  Google Scholar 

  13. Imayev, V., Imayev, R., Kuznetsov, A.: Scripta Mater. vol. 49, p. 1047 (2003)

    Google Scholar 

  14. Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H., Leitner, H., Dehm, G., Gerling, R., Schimansky, F.P.: Intermetallics 14, 1380 (2006)

    Article  Google Scholar 

  15. Perez-Bravo, M., Madariaga, I., Estolaza, K., Tello, M.: Scripta Mater. 53, 1141 (2005)

    Article  Google Scholar 

  16. Wang, J.N., Yang, J., Wang, Y.: Scripta Mater. 52, 329 (2005)

    Article  Google Scholar 

  17. Mamdani, E.H., Assilian, S.: Int. J. Man Machine Stud. 7(1), 1 (1975)

    Article  MATH  Google Scholar 

  18. Gupta, R.K., Rama, M., Vijaya, A., Bhanu, P., Sinha, P.P.: Trans. IIM 63(6), 833 (2010)

    Google Scholar 

  19. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice Hall of India Pvt. Ltd., India (1996)

    Google Scholar 

  20. Ross, T.J.: Fuzzy logic with Engineering Applications. Electrical Engineering series. Mc Graw Hill International Editions (1997)

    Google Scholar 

  21. Civanlar, M.R., Trussel, H.J.: Constructing membership functions using statistical data. Fuzzy Sets and Systems 18, 1 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Devi, B.B., Sharma, V.V.S.: Information Sci., vol. 35 (1), p. 43 (1985)

    Google Scholar 

  23. MATLAB Fuzzy logic toolbox. The MATH WORKS, Inc. (1995)

    Google Scholar 

  24. Bardossy, A., Duckstein, L.: Fuzzy rule based modeling with applications to geophysical, biological and engineering systems. CRC press, Boca Raton (1995)

    MATH  Google Scholar 

  25. Takagi, T., Sugeno, M.: IEEE Trans. Syst. Man. Cyber. 15, 116 (1985)

    MATH  Google Scholar 

  26. Dombi, J.: Fuzzy Sets and Systems 35, 1 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chiu, S.L.: J. Intelligent Fuzzy System 2, 267 (1994)

    MathSciNet  Google Scholar 

  28. Nash, J.E., Sutcliffe, J.V.: Hydrology J. 10, 282 (1970)

    Article  Google Scholar 

  29. Huang, S.C.: Metall. Trans. 23A, 375 (1992)

    Google Scholar 

  30. Salishchev, G.A., Imayev, R.M., Senkov, O.N., Froes, F.H.: J. of Metals 46 (2000)

    Google Scholar 

  31. Imayev, R., Imayev, V., Salishchev, G.: Scripta Metall. 29, 719 (1993)

    Article  Google Scholar 

  32. Imayev, R., Imayev, V., Salishchev, G.: Scripta Metall. 29, 713 (1993)

    Article  Google Scholar 

  33. Hu, D.: Intermetallics 10, 851 (2002)

    Article  Google Scholar 

  34. Tang, J., Huang, B., Liu, W., He, Y., Zhou, K., Wu, A., Peng, K., Qin, W., Du, Y.: Materials Research Bulletin 38, 2019 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India Pvt. Ltd.

About this paper

Cite this paper

Gupta, R.K., Pant, B., Sinha, P.P., Mehta, R., Agarwala, V. (2012). Study on Ductility of Ti Aluminides Using Mamdani Fuzzy Inference System. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011. Advances in Intelligent and Soft Computing, vol 130. Springer, India. https://doi.org/10.1007/978-81-322-0487-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0487-9_2

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-0486-2

  • Online ISBN: 978-81-322-0487-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics