Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 130))

  • 2162 Accesses

Abstract

Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely. However, the tendency of electric load sometimes reveals cyclic changes due to seasonal economic activities or climate seasonal nature. The applications of SVR model to deal with cyclic electric load forecasting have not been widely explored. This investigation presents a SVR-based electric load forecasting model which applied a novel hybrid algorithm, namely chaotic genetic algorithm-simulated annealing algorithm (CGASA), to improve the forecasting performance. In addition, seasonal adjustment mechanism is also employed to deal with cyclic electric loading tendency. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed seasonal support vector regression with chaotic genetic algorithm, namely SSVRCGASA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models in existed papers. Therefore, the SSVRCGASA model is a promising alternative for electric load forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  2. Chen, J.F., Wang, W.M., Huang, C.M.: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting. Electric Power Systems Research 34, 187–196 (1995)

    Article  Google Scholar 

  3. Vemuri, S., Hill, D., Balasubramanian, R.: Load forecasting using stochastic models. In: Proceeding of the 8th Power Industrial Computing Application Conference, pp. 31–37 (1973)

    Google Scholar 

  4. Wang, H., Schulz, N.N.: Using AMR data for load estimation for distribution system analysis. Electric Power Systems Research 76, 336–342 (2006)

    Article  Google Scholar 

  5. Christianse, W.R.: Short term load forecasting using general exponential smoothing. IEEE Transactions on Power Apparatus and System PAS-90, 900–911 (1971)

    Article  Google Scholar 

  6. Park, J.H., Park, Y.M., Lee, K.Y.: Composite modeling for adaptive short-term load forecasting. IEEE Transactions on Power Systems 6, 450–457 (1991)

    Article  Google Scholar 

  7. Mbamalu, G.A.N., El-Hawary, M.E.: Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation. IEEE Transactions on Power Systems 8, 343–348 (1993)

    Article  Google Scholar 

  8. Douglas, A.P., Breipohl, A.M., Lee, F.N., Adapa, R.: The impact of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems 13, 1507–1513 (1998)

    Article  Google Scholar 

  9. Trudnowski, D.J., McReynolds, W.L., Johnson, J.M.: Real-time very short-term load prediction for power-system automatic generation control. IEEE Transactions on Control Systems Technology 9, 254–260 (2001)

    Article  Google Scholar 

  10. Park, D.C., El-Sharkawi, M.A., Marks II, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems 6, 442–449 (1991)

    Article  Google Scholar 

  11. Mirasgedis, S., Safaridis, Y., Georgopoulou, E., Lalas, D.P., Moschovits, M., Karagiannis, F., Papakonstantinou, D.: Models for mid-term electricity demand forecasting incorporating weather influences. Energy 31, 208–227 (2006)

    Article  Google Scholar 

  12. Mohamed, Z., Bodger, P.: Forecasting electricity consumption in New Zealand using economic and demographic variables. Energy 30, 1833–1843 (2005)

    Article  Google Scholar 

  13. Rahman, S., Bhatnagar, R.: An expert system based algorithm for short-term load forecasting. IEEE Transactions on Power Systems 3, 392–399 (1988)

    Article  Google Scholar 

  14. Chiu, C.C., Kao, L.J., Cook, D.F.: Combining a Neural Network with a rule-based expert system approach for short-term power load forecasting in Taiwan. Expert Systems with Applications 13, 299–305 (1997)

    Article  Google Scholar 

  15. Rahman, S., Hazim, O.: A generalized knowledge-based short-term load- forecasting technique. IEEE Transaction on Power Systems 8, 508–514 (1993)

    Article  Google Scholar 

  16. Abdel-Aal, R.E.: Short-term hourly load forecasting using abductive networks. IEEE Transactions on Power Systems 19, 164–173 (2004)

    Article  Google Scholar 

  17. Darbellay, G.A., Slama, M.: Forecasting the short-term demand for electricity—do neural networks stand a better chance? International Journal of Forecasting 16, 71–83 (2000)

    Article  Google Scholar 

  18. Hsu, C.C., Chen, C.Y.: Regional load forecasting in Taiwan—application of artificial neural networks. Energy Conversion and Management 44, 1941–1949 (2003)

    Article  Google Scholar 

  19. Suykens, J.A.K.: Nonlinear modelling and support vector machines. In: Proceeding of IEEE Instrumentation and Measurement Technology Conference, pp. 287–294 (2001)

    Google Scholar 

  20. Vapnik, V., Golowich, S., Smola, A.: Support vector machine for function approximation, regression estimation, and signal processing. In: Advances in Neural Information Processing Systems, vol. 9, pp. 281–287 (1996)

    Google Scholar 

  21. Cao, L.: Support vector machines experts for time series forecasting. Neurocomputing 51, 321–339 (2003)

    Article  Google Scholar 

  22. Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Computers and Operations Research 32, 2513–2522 (2005)

    Article  MATH  Google Scholar 

  23. Hung, W.M., Hong, W.C.: Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control and Cybernetics 38, 863–891 (2009)

    Google Scholar 

  24. Pai, P.F., Lin, C.S.: A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33, 497–505 (2005)

    Article  Google Scholar 

  25. Pai, P.F., Lin, C.S., Hong, W.C., Chen, C.T.: A hybrid support vector machine regression for exchange rate prediction. International Journal of Information and Management Sciences 17, 19–32 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Hong, W.C., Dong, Y., Chen, L.Y., Wei, S.Y.: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Applied Soft Computing 11, 1881–1890 (2011)

    Article  Google Scholar 

  27. Pai, P.F., Hong, W.C.: An improved neural network model in forecasting arrivals. Annals of Tourism Research 32, 1138–1141 (2005)

    Article  Google Scholar 

  28. Hong, W.C.: Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation 200, 41–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong, W.C., Pai, P.F.: Potential assessment of the support vector regression technique in rainfall forecasting. Water Resources Management 21, 495–513 (2007)

    Article  Google Scholar 

  30. Pai, P.F., Hong, W.C.: A recurrent support vector regression model in rainfall forecasting. Hydrological Processes 21, 819–827 (2007)

    Article  Google Scholar 

  31. Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renewable Energy 29, 939–947 (2004)

    Article  Google Scholar 

  32. Hong, W.C., Dong, Y., Zheng, F., Wei, S.Y.: Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Applied Mathematics and Computation 217, 6733–6747 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hong, W.C., Dong, Y., Zheng, F., Lai, C.Y.: Forecasting urban traffic flow by SVR with continuous ACO. Applied Mathematical Modelling 35, 1282–1291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hong, W.C.: Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74, 2096–2107 (2011)

    Article  Google Scholar 

  35. Hong, W.C.: Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. International Journal of Electrical Power and Energy Systems 31, 409–417 (2009)

    Article  Google Scholar 

  36. Hong, W.C.: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management 50, 105–117 (2009)

    Article  Google Scholar 

  37. Hong, W.C.: Electric load forecasting by support vector model. Applied Mathematical Modelling 33, 2444–2454 (2009)

    Article  MATH  Google Scholar 

  38. Hong, W.C.: Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 38, 5830–5839 (2010)

    Article  Google Scholar 

  39. Hong, W.C.: Electric load forecasting by seasonal recurrent SVR with chaotic artificial bee colony algorithm. Energy 36, 5568–5578 (2011)

    Article  Google Scholar 

  40. Pai, P.F., Hong, W.C.: Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electric Power Systems Research 74, 417–425 (2005)

    Article  Google Scholar 

  41. Pai, P.F., Hong, W.C.: Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 46, 2669–2688 (2005)

    Article  Google Scholar 

  42. Yang, X.-S., Deb, S., Fong, S.: Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications. In: Fong, S. (ed.) NDT 2011. Communications in Computer and Information Science, vol. 136, pp. 53–66. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  43. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17, 113–126 (2004)

    Article  MATH  Google Scholar 

  44. Holland, J.: Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  45. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lee, J., Johnson, G.E.: Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation. Computer Aided Design 25, 601–611 (1983)

    Article  Google Scholar 

  47. Shieh, H.J., Peralta, R.C.: Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing. Journal of Water Resources Planning and Management 131, 67–78 (2005)

    Article  Google Scholar 

  48. Ponnambalam, S.G., Reddy, M.M.: A GA-SA multi-objective hybrid search algorithm for integrating lot sizing and sequencing in flow-line scheduling. International Journal of Advanced Manufacturing Technology 21, 126–137 (2003)

    Google Scholar 

  49. Zhao, F., Zeng, X.: Simulated annealing—genetic algorithm for transit network optimization. Journal of Computing in Civil Engineering 20, 57–68 (2006)

    Article  Google Scholar 

  50. Cordón, O., Moya, F., Zarco, C.: A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems. Soft Computing 6, 308–319 (2002)

    Article  MATH  Google Scholar 

  51. Ganesh, K., Punniyamoorthy, M.: Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing. International Journal of Advanced Manufacturing Technology 26, 148–154 (2005)

    Article  Google Scholar 

  52. Wang, Z.G., Wong, Y.S., Rahman, M.: Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. International Journal of Advanced Manufacturing Technology 24, 727–732 (2004)

    Article  Google Scholar 

  53. Bergey, P.K., Ragsdale, C.T., Hoskote, M.: A simulated annealing genetic algorithm for the electrical power districting problem. Annals of Operations Research 121, 33–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dagum, E.B.: Modelling, forecasting and seasonally adjusting economic time series with the X-11 ARIMA method. Journal of the Royal Statistical Society, Series D (The Statistician) 27, 203–216 (1978)

    Google Scholar 

  55. Kenny, P.B., Durbin, J.: Local trend estimation and seasonal adjustment of economic and social time series. Journal of the Royal Statistical Society, Series A (General) 145, 1–41 (1982)

    Article  Google Scholar 

  56. Wang, J., Zhu, W., Zhang, W., Sun, D.: A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 37, 4901–4909 (2009)

    Article  Google Scholar 

  57. Xiao, Z., Ye, S.J., Zhong, B., Sun, C.X.: BP neural network with rough set for short term load forecasting. Expert Systems with Applications 36, 273–279 (2009)

    Article  Google Scholar 

  58. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  59. Dekkers, A., Aarts, E.H.L.: Global optimization and simulated annealing. Mathematical Programming 50, 367–393 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Azadeh, A., Ghaderi, S.F.: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management 49, 2272–2278 (2008)

    Article  Google Scholar 

  61. Deo, R., Hurvich, C.: Forecasting realized volatility using a long- memory stochastic volatility model: estimation, prediction and seasonal adjustment. Journal of Econometrics 131, 29–58 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India Pvt. Ltd.

About this paper

Cite this paper

Hong, WC., Dong, Y., Chen, LY., Panigrahi, B.K., Wei, SY. (2012). Support Vector Regression with Chaotic Hybrid Algorithm in Cyclic Electric Load Forecasting. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011. Advances in Intelligent and Soft Computing, vol 130. Springer, India. https://doi.org/10.1007/978-81-322-0487-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0487-9_79

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-0486-2

  • Online ISBN: 978-81-322-0487-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics