Abstract
This paper presents a method to select the optimum design of turbo-alternator (TA) using modified elitist non-dominated sorting genetic algorithm (NSGA-II). In this paper, a real-life TA used in an industry is considered. The probability distribution of simulated binary crossover (SBX-A) operator, used in NSGA-II algorithm, is modified with different probability distributions. The NSGA-II algorithm with lognormal probability distribution (SBX-LN) performed well for the TA design. It found more number of optimal solutions with better diversity for the real-life TA design.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gray, A.: Electrical Machine Design – The Design and Specification of Direct and Alternating Current Machinery. Mcgrawhill Book Company, Inc. (1913).
Sawheny, A.K.: Electrical Machine Design. Dhanpat Rai & Sons, Newdelhi (1991).
Lamme, B.G.: High speed turbo-alternator-designs and limitations. Proceedings of the IEEE. 72, 494-526 (1984).
Ula, A.H.M.S., Stephenson, J.M., Lawrenson, P.J.: The effect of design parameters on the dynamic behavior of the superconducting alternators. IEEE Trans. Energy Conversion. 3, 179-186 (1988).
Azzouri, J., Karim, N.A., Barkat, G., Dakyo, B.: Axial flux permanent magnet synchronous generator design optimization: Robustness test of the genetic algorithm approach. ESPE 2005, Dresden. P1-P10 (2005).
Deb, K.: Optimization for Engineering Design. Prentice-hall of India Private limites, Newdelhi (1998).
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John wiley & sons limited, Chichester (2002).
Deb, K., Agarwal, S., Pratap, A., Meyariven, T.A.: A fast and elitist mutli-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutioanary Computation. 6, 182-197 (2002).
Deb, K.: Multi-objective genetic algorithms: Problems difficulties and construction of test functions. Evolutionary Computation. 7, 205-230 (1999).
Deb, K., Pratap, A., Moitra, S: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. Kangal Technical Report no. 200002, Indian Institute of Technology Kanur, Kanpur, India (2000).
Raghuwanshi, M.M., Singru, P.M., Kale, U., Kakde, O.G.: Simulated binary crossover with lognormal distribution. Complexity International. 12, 1-10 (2008).
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Verlag Berlin Heidelberg (2005).
Prasad, K.V.R.B., Singru, P.M.: Performance of lognormal probability distribution in crossover operator of NSGA-II algorithm. SEAL 2010, Kanpur. 514-522 (2010).
Prasad, K.V.R.B., Singru, P.M.: Identifying the optimum design of turbo-alternator using different multi-objective optimization algorityhms. ITC 2010, Kochi. 150-158 (2010).
Central Electricity Board: Indian Electricity Rules, 1956 (as amended up to 25th Nov., 2000). Under section 37 of the Indian Electricity Act. 1910 (9 of 1910). Ministry of power, Government of India. http://www.powermin.nic.in/acts_notification/pdf/ier1956.pdf (2000).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer India
About this paper
Cite this paper
Prasad, K.V.R.B., Singru, P.M. (2013). Optimum Design of Turbo-Alternator Using Modified NSGA-II Algorithm. In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol 202. Springer, India. https://doi.org/10.1007/978-81-322-1041-2_22
Download citation
DOI: https://doi.org/10.1007/978-81-322-1041-2_22
Published:
Publisher Name: Springer, India
Print ISBN: 978-81-322-1040-5
Online ISBN: 978-81-322-1041-2
eBook Packages: EngineeringEngineering (R0)