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Preface

Artificial Neural Networks (ANNs), having a highly parallel architecture, have
emerged as a new paradigm for solving computationally intensive tasks using
collective computation in a network of neurons. They can be considered as analog
computers relying on simplified models of neurons. The essential difference
between the ANN’s distributed computation and a modern day digital computer’s
functioning is that in the case of a digital computer, the processing is often cen-
tralized at one location by means of a single processor (aptly referred to as the
‘uniprocessor’ architecture), whereas the collective computation model of a neural
network depends upon the simultaneous working of hundreds of thousands of
analog neural processors. Each of these ‘neurons’ have very limited computational
power when considered as a separate entity. However, the real power comes with
their acting in unison. The immense computational abilities of a neural network are
a perfect example of the benefits of teamwork!

Recurrent neural networks, which are essentially ANNs employing feedback
interconnections between the neurons, were extensively explored after the concept
of Lyapunov (or ‘energy’) functions, as a means of understanding the complex
dynamics of such networks, was introduced by Hopfield and Tank. Their archi-
tecture, called the Hopfield Network, was implementable in hardware, and
although it became very popular, many limitations like convergence to infeasible
solutions and the requirement of a large number of neurons and interconnection
weights were revealed when attempts were made to apply it to practical applica-
tions. These drawbacks warranted the exploration of alternative neural network
architectures which are amenable to hardware realizations. The Nonlinear Synapse
Neural Network (NOSYNN) has been proposed as one such alternative which
alleviates the problems that plagued the Hopfield Network.

This book deals with VLSI implementations and applications of the NOSYNN
type of nonlinear feedback neural networks. These networks have been shown to
be better performing than their Hopfield Neural Network (HNN)-based counter-
parts, in the sense that their convergence to the exact solution is fast and guar-
anteed. This improvement in the performance is due to underlying difference in the
nature of feedback between the HNN and the NOSYNN. While the HNN employs
linear feedback (typically implemented using resistors), the NOSYNN employs
nonlinear feedback (typically implemented using voltage-mode comparators). This
difference in hardware also carries over to a difference in the dynamical properties
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viii Preface

of the two networks and makes the energy functions of the two networks vastly
different. While the HNN has a quadratic form of the energy function, the NO-
SYNN has transcendental terms in its energy function which account for better and
faster convergence characteristics.

In this text, the NOSYNN architecture has been chosen as the starting point of
the exploration for better hardware implementations of ANNs. Thereafter, the
content progresses in two dimensions. First, the voltage-mode NOSYNN has been
reconfigured and applied to a new problem, viz. the solution of linear equations.
As has been mentioned above, the NOSYNN-based neural network for solving
linear equations has an associated energy function which contains transcendental
terms as opposed to the quadratic terms in the energy functions for the Hopfield
network and its variants. It is shown that the network has only a unique minimum
in the energy landscape, and moreover, the global minimum coincides exactly with
the solution point of the system of linear equations. Thereafter, it has been shown
that two other important problems of mathematical programming: linear pro-
gramming problem (LPP) and quadratic programming problem (QPP) could also
be solved by incorporating small modifications in the voltage-mode network
proposed for the solution of linear equations.

Second, a ‘mixed’-mode (MM) implementation for the NOSYNN has been
discussed. Applications of the ‘mixed’-mode neural circuit in solving linear
equations, LPP, QPP, graph coloring, and ranking of numbers, are explained in
detail. In the so-called ‘mixed’-mode hardware realization, neuron states are
represented as voltages whereas the synaptic interconnections convey information
in the form of currents. It has been shown that the mixed-mode implementation of
the NOSYNN leads to reduction in the overall circuit complexity, as compared to
the voltage-mode realization, by eliminating the resistors employed as synaptic
weights. Two different VLSI realizations of the ‘mixed’-mode networks are dis-
cussed. The first employs Differential Voltage Current Conveyors (DVCCs) to
implement voltage comparators with current outputs. The second class of real-
izations use Operational Transconductance Amplifiers (OTAs) to provide the
required voltage comparison at the inputs of the comparators.

Why this Book?

A very pertinent question that would come to the mind of a person coming across
this book, while searching for a book on feedback neural networks, is “What does
this text has to offer which any other book does not?” The answer to the question
lies in the nature of content. While a multitude of (very good) books on neural
networks are heavy on theory and the related mathematics without dwelling on the
actual hardware implementations, this particular text focusses on the intricacies
involved when a neural circuit is actually realized in hardware. This book does not
intend to replace the already established books on the subject. Rather, it offers the
readers an additional cue about how to actually port the neural circuit, leaving
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behind all the mathematics, to a real-world circuit, for instance, a CMOS reali-
zation. The block diagram representations that abound in many of the existing
texts are sufficient for developing an understanding about the intended working of
the network. However, such a representation generally assumes ideal values and
behavior of the various components, which is seldom the case in an actual real-
world implementation. This has led to a severe dent on the neural network field in
general, with critics saying that neural networks promise the moon but deliver
nothing. Almost entirety of such statements are issued by researchers who are
attracted by the field only to find it full of perfectly working mathematical models
which turn into nonperforming entities in a breadboard implementation. It is the
contention of the author that a significant number of such misplaced ideas about
neural networks can be eliminated if interested persons are provided the required
help in actual hardware design and testing of such circuits.

Although it is true that the real power of neural networks lies in massively
parallel structures, containing hundreds of neurons, capable of solving combina-
torial (and other) problems comprising a large number of variables; the fact should
not prevent a book from being able to provide small-sized scaled versions of those
huge networks, just to make a reader familiar with the actual operation of the
network. The approach followed in this book is simply to start with the most
simple case, understand its operation, get its maths right, test it in hardware, and
then move on to somewhat bigger problems. For instance, for every linear equation
solver discussed in the book, first a small circuit capable of solving just two linear
equations is presented and explained. It is the belief of the author that the concept
of energy function is easily grasped for networks with low neuron counts. Once the
operation, maths and the hardware of the two variable linear equation solver is
complete, the text moves on to slightly more complex circuits before finally
dealing with the generalized version of the network.

Prerequisites

For a good understanding of the topics covered in this book, a reader should have
knowledge about electronic amplifiers, particularly the operational amplifier. A
basic knowledge of circuit theory is assumed. On the mathematics front, the reader
should have studied differential and integral calculus as well as mathematical
optimisation.
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