Skip to main content

Approximate Solution of Integral Equation Using Bernstein Polynomial Multiwavelets

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 259))

  • 1517 Accesses

Abstract

The aim of present article is to find the approximate solution of integral equation using Bernstein multiwavelets approximation. Bernstein polynomial multiwavelets are constructed using orthonormal Bernstein polynomials. These Bernstein polynomial multiwavelets approximate the solution of integral equation. Using orthogonality property of Bernstein polynomial muliwavelets operational matrix of integration is obtained which reduces the integral equation in the system of algebraic equation and can be solved easily. The examples of different profiles are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, N.H.: Resolution d’un problemde mechanique. J. Reine. Angew. Math. 1, 153–157 (1826)

    Article  MATH  Google Scholar 

  2. Mach, L.: Wien Akad. Ber. Math. Phys. Klasse 105, 605 (1896)

    Google Scholar 

  3. Jakeman, A.J., Anderssen, R.S.: Abel type integral equations in stereology I. General discussion. J. Microsc. 105, 121–133 (1975)

    Article  Google Scholar 

  4. Healy, S.B., Haase, J., Lesne, O.: Abel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere. Annal. Geophys. 20, 1253–1256 (2002)

    Article  Google Scholar 

  5. Solomon, S.C., Hays, P.B., Abreu, V.J.: Tomographic inversion of satellite photometry. Appl. Opt. 23, 3409–3414 (1984)

    Article  Google Scholar 

  6. Kosarev, E.L.: Applications of integral equations of the first kind in experiment physics. Comput. Phys. Commun. 20, 69–75 (1980)

    Article  Google Scholar 

  7. Buck, U.: Inversion of molecular scattering data. Rev. Mod. Phys. 46, 369–389 (1974)

    Article  MathSciNet  Google Scholar 

  8. Hellsten, H., Andersson, L.E.: An inverse method for the processing of synthetic apertureradar data. Inverse Prob. 3, 111–124 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Anderssen, R.S., Calligaro, R.B.: Non destructive testing of optical-fiber preforms. J. Aust. Math. Soc. (Ser B) 23, 127–135 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Glantschnig, W.J.: How accurately can one reconstruct an index profile from transverse measurement data. IEEE J. Lightwave Technol. 3, 678–683 (1985)

    Article  Google Scholar 

  11. Keren, E., Bar-Ziv, E., Glatt, I., Kafri, O.: Measurements of temperature distributionof flames by moiré deflectometry. Appl. Opt. 20, 4263–4266 (1981)

    Article  Google Scholar 

  12. Tallents, C.J., Burgess, M.D.J., Luther-Davies, B.: The determination of electrondensity profiles from refraction measurements obtained using holographic interferometry. Opt. Commun. 44, 384–387 (1983)

    Article  Google Scholar 

  13. Fleurier, C., Chapelle, J.: Inversion of Abel’s integral equation application to plasma spectroscopy. Comput. Phys. Commun. 7, 200–206 (1974)

    Article  Google Scholar 

  14. Yousefi, S.A.: B-Polynomial multiwavelets approach for solution of Abel’s integral equation. Int. J. Comp. Math. 87, 310–316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yousefi, S.A.: Numerical solution of Abel’s integral equation by using Legendrewavelets. Appl. Math. Comput. 175, 574–580 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bhattacharya, S., Mandal, B.N.: Use of Bernstein polynomials in numerical solutions of Volterra integral equations. Appl. Math. Scien. 2(36), 1773–1787 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Mohammad, P., Ali, T., Morteza, M.G., Saboori, S.: Wavelet compression of ECG signal using SPIHT algorithm. Int. J. Inf Com Eng. 2, 219 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Suman, S., Singh, K.K., Pandey, R.K. (2014). Approximate Solution of Integral Equation Using Bernstein Polynomial Multiwavelets. In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1768-8_43

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1767-1

  • Online ISBN: 978-81-322-1768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics