
A Maximum Degree Self-Stabilizing Spanning Tree
Algorithm

Deniz Cokuslu1,2,3 Kayhan Erciyes4

 denizcokuslu@iyte.edu.tr kayhan.erciyes@izmir.edu.tr

Abdelkader Hameurlain3

 hameur@irit.fr

1Izmir Institute of Technology, Department of Computer Engineering
Gulbahce, Urla, 35430 Izmir, Turkey

2International Computer Institute, Ege University
Bornova, 35100 Izmir, Turkey
3IRIT, Paul Sabatier University

118 Route de Narbonne, 31062 Toulouse, France
4Izmir University, Gursel Aksel Bulvari,

Uckuyular, 35350 Izmir, Turkey

Abstract

Spanning trees are fundamental topological structures in distributed
environments which ease many applications that require frequent
communication between nodes. Many different approaches are proposed in the
literature for building spanning trees. Moreover, many other studies also
consider fault tolerance and self stabilization properties while building these
topological structures. Although there are known advantages of the self
stabilization paradigm such as fault tolerance, tradeoffs between classical and
self-stabilizing approaches to build spanning trees using distributed algorithms
is not studied adequately. In this paper, we examine and compare two similar
existing spanning tree construction algorithms which rely on different
paradigms: classical versus self stabilization approach and propose a new self-
stabilizing spanning tree construction algorithm which uses maximum degree
heuristic while choosing the root node. We show experimentally that our new
algorithm provides smaller tree diameters than the two existing approaches with
favorable run-times.

1. Introduction

Spanning tree algorithms are widely used in many distributed applications. A
spanning tree is a subset S of a graph G which contains every node in G and which
does not contain any cycles. With the growth in the scale of distributed systems such

2 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

as grid systems, the need for such topological control mechanisms has gained
significant importance. These control mechanisms decrease the complexity of
distributed algorithms caused by the connectivity of the underlying graph. By using
spanning trees, many distributed applications can be implemented efficiently by
making use of their properties. Especially, algorithms which involve multicast or
broadcast operations exploit spanning trees since many efficient specific routing and
multicasting algorithms exist. Distributed spanning tree construction algorithms have
gained significant importance in the last decade since in environments such as grid
systems, it is very hard to keep system wide information to build such topologies
centrally. Many algorithms have been developed to build different types of spanning
trees. Several studies focus on constructing minimum spanning trees in which the sum
of edge weights is minimized [4, 16, 2, 10]. Minimum spanning trees are useful
especially if communication costs are required to be minimized. Studies such as [6]
construct a minimum degree spanning tree in which degrees of vertices are
minimized. This property helps efficient routing of messages under heavy
communication traffic. Some other studies aim to construct minimum diameter
spanning tree in which diameter of the resulting spanning tree is minimized [7]. This
property helps broadcasting of messages by optimizing the distance between vertices
in the graph.

Besides classical distributed spanning tree construction algorithms, some of these
studies also consider dynamicity and fault tolerance in their design. To cope up with
the dynamicity of grid, self-stabilizing spanning tree algorithms have received
attention recently [11]. Self-stabilizing paradigm ensures the validity of spanning tree
structure without having the need to regenerate the spanning tree every time
dynamicity occurs in the network. Self stabilization is a paradigm for distributed
systems that allows the system to achieve a desired global state, even in the presence
of faults. The concept of self stabilization was introduced in 1974 by Dijkstra [8]. The
idea of self-stabilizing algorithms is that independently of the global state of the
system, after a finite amount of time the system will reach to a correct global state. In
a self-stabilizing algorithm, each node maintains local variables, and changes its state
according to only on its local variables and the contents of its neighbors’ local
variables. The contents of a node's local variables constitute its local state and the
union of all local states constitutes the system wide global state. Self stabilization is a
very useful approach for the systems in which dynamicity occurs frequently, such as
grid systems. Therefore it may be convenient to use self stabilization in such
environments when designing distributed applications.

In this paper, we aim to show how self stabilization property affects the
performance of a spanning tree construction algorithm. For this purpose, for the sake
of simplicity we selected two spanning tree construction algorithms which do not
consider any complex spanning tree property, a classical [15] and a self-stabilizing
spanning tree construction algorithm [1]. We have examined, analyzed, implemented
and tested these two algorithms, and compared the test results in terms of runtime of
the algorithms and resulting spanning tree diameters. While runtime results show the
tradeoff between the two approaches, the diameter results ensures that the algorithms
result in spanning trees with similar characteristics. We also propose a new self-
stabilizing spanning tree construction algorithm based on [1] which considers degrees
of nodes in determining the root node of the resulting spanning tree. This heuristic is

A Maximum Degree Self-Stabilizing Spanning Tree Algorithm 3

based on the observation that a root node will be involved in more frequent
communications than the rest therefore it would be sensible that this node should have
the property of having a higher degree than the average. We show that the resulting
algorithm provides trees with the smaller diameters than the other two algorithms and
also has favorable execution times experimentally. The rest of this paper is organized
as follows: Section 2 gives background about the recent spanning tree construction
algorithms. Section 3 examines the two selected spanning tree algorithms by giving
detailed analysis. The new self-stabilizing spanning tree algorithm is described in
Section 4 and the implementation details of the three algorithms is given in Section 5.
Finally in Conclusion, the tradeoffs and comparisons and advantages of the new
algorithm are examined.

2. Background

2.1. Self-stabilizing spanning tree algorithms

In [14], Kotowski and Kuszner proposed two self-stabilizing algorithms to find
spanning tree in a polynomial number of rounds. In their study, they have
distinguished a root node for the spanning tree construction. In their first algorithm,
each node chooses the minimum id neighbor as its parent node. The root node has
always id 0. In their second algorithm, each node holds a variable and the nodes use
this variable to choose their parents instead of id numbers.

In [3], Antonoiu and Srimani proposed a self-stabilizing minimum spanning tree
construction algorithm. In their design they assume that the edges in the graph have
unique weights. They defined a reference node, root node, which is assumed to be
privileged only once and can never be privileged again after it takes action. All other
nodes take action according to the path specification between them and the root node.
The difference between the rules for the root node and other nodes makes this
algorithm a semi-uniform algorithm. At the end of the execution, a minimum
spanning tree is constructed.

Gupta and Srimani proposed two self-stabilizing spanning tree algorithms in [12].
They consider ad-hoc networks as the system model in their design. In their first
algorithm they construct s shortest path spanning tree in the ad-hoc network, while in
their second algorithm, they built a minimum spanning tree. Both of those algorithms
rely on the existence of a specified root node. The root node is assumed to be stable in
the sense that it won’t leave the system.

Blin et al. proposed a self-stabilizing algorithm to find minimum degree spanning
tree in a network in [6]. They take the study proposed in [1] as a base and they
improve the algorithm by adding a degree reduction module which decreases the
degree of the resulting spanning tree in each round. As in [1], this algorithm is also
prone to the failure of the root node.

Butelle et al. presented a uniform self-stabilizing algorithm which finds a
minimum diameter spanning tree of an arbitrary positively real-weighted graph [7].

4 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

They have designed their algorithm to consist of two phases. In the first phase, a
uniform randomized stabilizing unique naming protocol is designed in order to break
the symmetry in the graph. In the second phase, they developed a self-stabilizing
minimum diameter spanning tree protocol. Their algorithm relies on a center node in
the network. The center node is used as the root node of the tree, and is determined in
a self-stabilizing fashion.

In [13], Herault et al. proposed a self-stabilizing spanning tree algorithm for large
scale systems. They use only two assumptions in their design. First assumption is that
each node is equipped with a service that keeps a list of the node’s neighbors. The
second assumption is the existence of a failure detection service. By taking these
assumptions into consideration, they proposed an algorithm in which each node starts
being its own root. The roots try to merge their trees by asking each other to join by
looking and comparing their identifiers. At the end of the algorithm, the biggest id
node becomes the root of the final tree.

Pan et al. proposed a self-stabilizing spanning tree construction algorithm based on
a self-stabilizing maximum finding method [17]. In their algorithm they find the
maximum identifier and determine distances of each node to the maximum identifier
node. They insert parent relations according to the distances of the nodes. At the end,
the algorithm finds a BFS spanning tree. Since the algorithm does not require having
a root node initially, it is prone to root node dynamicity.

Baala et al. presented a random walk based spanning tree construction algorithm
which is self-stabilizing [5]. Their algorithm is based on random walk strategy which
is executed by independent mobile agents. The agents are merged into a spanning tree
when they meet each other regarding their color values. The final merged spanning
tree constitutes a coherent spanning tree of the whole system. This algorithm is a
uniform algorithm in which all nodes run the same algorithm. The root node is
determined at the end of the algorithm, therefore this system does not require having a
predetermined special root node. It is prone to node failures including the failure of
the root node.

Dolev et al. proposed a uniform BFS spanning tree algorithm [9]. In their study,
each node initiates the algorithm using its neighborhood. If the node's identifier is the
greatest in its neighborhood, it selects itself as the root node. If it learns that there is a
tree with a higher root identifier, the node joins to that tree by sending a joining
request. At the end, the algorithm stabilizes and a BFS spanning tree is constructed.

Afek et al. proposed memory-efficient self-stabilizing spanning tree algorithm for
general networks [1]. In their paper they also consider the dynamicity of the root
node. In their design, every node starts to create a tree rooted by it. Then trees are
merged by taking the biggest id root as the new root

2.2. Classical distributed spanning tree algorithms

Kshemkalyani and Singhal examined three different types of classical distributed
spanning tree algorithms [15]: synchronous single initiator spanning tree algorithm,
asynchronous single initiator spanning tree algorithm and asynchronous concurrent
initiator spanning tree algorithm. In synchronous single initiator algorithm, authors
assume existence of a root node which initiates the algorithm. They also assume that

A Maximum Degree Self-Stabilizing Spanning Tree Algorithm 5

the algorithm executes in rounds. The algorithm is based on the flooding of a query
message. The root node starts flooding, in each round a node sets the first sender of
the message as its parent, if multiple messages are received in the same round, a
random sender is selected as the parent. In asynchronous single-initiator algorithm,
the same idea is used, but instead of synchronous rounds, the algorithm uses accept or
reject messages to provide synchronization between nodes. In the third algorithm,
called asynchronous concurrent initiator spanning tree algorithm, each node starts to
create a spanning tree rooted by itself by sending query messages to their neighbors.
In every received message, the node checks if the sender of the message has a bigger
id than the current root node. If this is the case, the node joins that tree and sends a
message to its neighbor indicating its new parent and root. Else, the node sends a
reject message to the sender of the query, and continues its operation.

Many other techniques and algorithms exist to generate spanning trees in graphs.
In this paper, we only focus on simple classical spanning tree algorithms in which no
special constraints exist.

3. Main Algorithms

In this section, we examine, analyze, implement and compare the two spanning
tree construction algorithms: memory-efficient self-stabilizing spanning tree
algorithm [1] and asynchronous concurrent initiator spanning tree algorithm [15]. The
main difference between these two algorithms is the self stabilization property. We
aim to examine the influence of the self stabilization property on the performance of
spanning tree construction.

3.1. Memory-efficient self-stabilizing spanning tree algorithm

In [1], authors propose a self-stabilizing spanning tree construction algorithm.
They assume that nodes have unique identifiers and every node knows its neighbors.
They also assume that nodes are aware of their neighbors’ states; in other words,
when a node fails, neighbors of the failed node notice this failure and update their
neighbor lists. In this model, every node runs the same algorithm. At the beginning,
each node tries to construct a spanning tree rooted at itself. Then the independent trees
merge with each other considering the id of their roots. The larger process id overruns
the process of lower id nodes. At the end, the biggest id node overruns all the
remaining processes and becomes the root of the final spanning tree.

Each node i has local variables indicating its neighborhood (Ni), its parent node
(Pi), its root node (Ri) and its distance to the root node (Di). In the global legal state,
each node has the same root with the biggest node id in the graph, parents of nodes
are within their neighborhood and distance of each node is 1 bigger than its parent’s
distance (Di = Dparent + 1). The root node has distance 0, and points to itself as its root
and its parent. The algorithm runs in an infinite loop and checks the legal state
conditions continuously. To achieve self stabilization, each node compares its
neighbors’ roots with its root node. If any neighbor has a bigger id root, then the node

6 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

sends a request message to the bigger id root through its neighbor in order to join its
tree. When a root node receives such a message it replies with a grant message and
allows that node to join its tree.

The algorithm checks two conditions to determine whether it is in a legal state or
not:
A: [(Ri = i) Λ (Pi = i) Λ (Di = 0)] V [(Ri > i) Λ (Pi Є Ni) Λ (Ri = Rparent) Λ

(Distance = Dparent + 1 > 0)]

B: A Λ (Ri >= max(RNi))

Condition A states that either the node is a root node; or the node is not a root node,
its root is bigger than its id and same as its parent’s root, its parent is in its
neighborhood and its distance to the root is 1 bigger than its parent’s distance.
Condition B states that condition A is true and node’s root is the biggest among its
neighbors’ roots. When both A and B are true, the node is considered to be in the
legal state. The algorithm checks these two conditions and takes action according to
their correctness. When both conditions are false, then the node is in an illegal state
and sets itself as the root node of its own tree. If condition A is true and node’s root is
not the biggest id node within its neighbors’ roots, then the node chooses to join to the
tree with bigger root id. To realize this, the node sends a request message to the
biggest id root within its neighbors’ roots through its neighbors. If the condition B is
true, then the node is in the legal state. The algorithm also takes other actions in order
to relay messages while checking these conditions. In case of failure of an inner node
in the tree, the children of the failed node notice this failure and switch to the illegal
state because of the failure of condition A. This failure triggers self stability property
of this algorithm and relevant nodes take action in order to stabilize the spanning tree.

3.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm

The asynchronous concurrent initiator spanning tree algorithm [15] is a basic
classical distributed spanning tree construction algorithm in which nodes only need to
know their neighborhood information. The algorithm does not ensure self stability
property. It uses flooding in order to disseminate tree information to neighbors. Each
node starts to build its own tree rooted at itself at the beginning. When a node wants
to initiate the algorithm as a root, then it sends a query message to its neighborhood
indicating that it is a root node. When a node receives a query message it compares
the id of the sender with the id of its root, if new root has a bigger id then the node
changes its root to the new root. In this case if the node is a leaf node then it sends an
accept message, if not it sends a query message to its neighborhood indicating its new
root. If new root id is smaller than current root of the node, then the node sends a
reject message to the sender of the query message. When a node receives an accept
message, then it adds the sender node to its children list. If that node is an initiator
then it finishes its execution upon receiving accept messages from all its neighbors, if
the node is a relay node, it sends accept message to its parent upon receiving accept
messages from all its neighbors. When a node receives a reject message then it sends
an accept message to its parent. More details about the algorithm can be seen in Fig.1.

A Maximum Degree Self-Stabilizing Spanning Tree Algorithm 7

1. If parent is undefined
2. My parent = my id
3. My root = my id
4. Send QUERY message to all neighbors indicating that I am the root node

Upon receiving a message

5. If received message type is QUERY
6. If my root < received root
7. My parent = sender of the message
8. My root = received root
9. If I am a leaf node
10. Send ACCEPT message to the sender of the message
11. Else
12. Send QUERY message indicating my root to my neighbors
13. If my root > received root
14. Send REJECT message to the sender

15. If received message type is ACCEPT
16. If my root is same with the received root
17. Add sender node to my children list
18. If all my neighbors have replied to my QUERY
19. If I am the root terminate
20. Else send ACCEPT message to my parent

21. If received message type is REJECT
22. If received root is same with my root
23. If all my neighbors have replied to my QUERY
24. If I am the root terminate
25. Else send ACCEPT message to my parent

Fig.1 Asynchronous concurrent initiator spanning tree algorithm

4. Maximum Degree Self-Stabilizing Spanning Tree (MDST)
Algorithm

We propose an extended version of memory-efficient self-stabilizing spanning tree
algorithm which considers degrees of nodes while selecting the root node. In [1], the
algorithm constructs the spanning tree according to the id of the nodes by choosing
the biggest id node as the root node. This heuristic may have some disadvantages in
complex networks because it does not consider the suitability of the chosen node as a
root node. In many situations, predefined constraints are advantageous in choosing the
root node. For instance, choosing the biggest degree node as the root, or choosing the
center of the graph as the root node may be preferable if the desired operation is
broadcasting or multicasting. On the other hand, simple and straightforward nature of

8 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

memory-efficient self-stabilizing spanning tree algorithm makes it preferable because
of its low complexity measures. For these reasons, we propose to modify the memory-
efficient self-stabilizing spanning tree algorithm so that it constructs a spanning tree
rooted at the biggest degree node. The assumption here is that the biggest id node in
the graph is a better candidate to be a root node than a randomly chosen root, because
this choice may decrease the diameter of the resulting spanning tree since this choice
may decrease the height of the tree. To realize this, we first propose to use a simple
hash function which combines degrees of nodes with their node ids. We called the
resulting hash number as the tag of a node. This function inserts the degree of a node
to the most significant part of the tag, and it inserts ids to the least significant part of
the tag number. It normalizes the least significant part by inserting zeros at the
beginning of the node ids. At the end, each node has a unique tag value which is
sorted by nodes’ degrees. The algorithm considers tag values in determining root of
the nodes. The basic idea of our algorithm is the same with memory-efficient self-
stabilizing spanning tree algorithm; the only difference is the usage of tag values
instead of real ids of the nodes in determining root node. At the end of the execution
of the MDST algorithm, a spanning tree rooted at the highest degree node is
constructed.

5. Implementation and Experiments

We have implemented the three algorithms in the network simulator ns2. For the
self-stabilizing algorithms, we have simulated failure detection module by using
periodical messaging between neighboring nodes. Each node periodically sends a
message to all its neighbors indicating its variables (root, parent and distance). If any
message is not received from a neighbor in 2 periods then the node assumes that this
neighbor has failed, and takes action. In both algorithms, we used UDP protocol for
messaging. We did not use broadcast packet messages since ns2 does not support
broadcast messages in wired network scenarios.

We have generated 8 experiment scenarios by using randomly chosen wired
network topologies ranging from 100 to 800 nodes. In self-stabilizing algorithms, the
periods of status updates and self-stabilizing loops affect the runtime of the algorithm
drastically. For that reason, we tried to choose the update interval as small as possible
that ns2 allows.

Runtime results of the algorithms can be seen in Fig.2. The difference between
classical distributed approach and self-stabilizing approach is mainly caused by
periodical updates in self-stabilizing algorithms. The effect of self stabilization
property is magnified as the number of nodes is increased. While the runtime of
asynchronous concurrent initiator spanning tree algorithm remains nearly constant,
the runtime of self-stabilizing algorithms increases. But it is also seen that this
increase is sub-linear with respect to the increase in the number of nodes which
ensures the scalability of these algorithms.

The run-times of the algorithms with respect to the number of nodes is shown in
Fig.2. It may be observed that MDST performs much better than the original self-
stabilizing spanning tree algorithm. The difference is more evident for greater number

A Maximum Degree Self-Stabilizing Spanning Tree Algorithm 9

of nodes. Fig.3 depicts the variation diameters of resulting spanning trees by using
three different algorithms. The diameter of a tree is an important measure which is
defined as the minimum distance between the two most distant nodes in the tree. It
affects the performance of algorithms like routing and broadcasting algorithms, which
use resulting spanning tree’s properties. It may be seen that both memory-efficient
self-stabilizing spanning tree algorithm and asynchronous concurrent initiator
spanning tree algorithm have resulted in similar results in terms of tree diameters,
while MDST algorithm has resulted in smaller diameter spanning trees. This
difference is caused by the heuristic which is used in choosing the root node.

Fig.2 Runtime results of spanning tree construction algorithms

10 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

Fig.3 Diameter results of spanning tree construction algorithms

Conclusions

In this paper, we described, implemented and compared simulation results of two
basic existing spanning tree construction algorithms which rely on different
paradigms. We also proposed a new self-stabilizing spanning tree algorithm which
relies on choosing the maximum degree node as the root. We showed the differences
and similarities between self-stabilizing and classical approaches in terms of
experiment results, and proposed a new algorithm. According to the implementation
results we can say that both classical and self-stabilizing spanning tree algorithms
behave similarly in terms of resulting spanning tree’s degrees if the constraints are
also similar. In MDST algorithm, with the use of maximum degree heuristic, the
diameter of the resulting spanning tree is decreased. According to the runtime results,
we can say that self-stabilizing spanning tree algorithms are more sensible to the
number of nodes than the classical approach. This difference is mainly caused by
periodic updates of the nodes and self stabilization property. Although runtime of the
self-stabilizing spanning tree algorithms increase when the size of the network grows,
this increase is neither exponential nor linear. This sub-linear increase proves the
scalability of the self-stabilizing algorithms as investigated in this study. The benefit
is the self stabilization property which can drastically decrease the maintenance costs
of spanning trees in large networks.

A Maximum Degree Self-Stabilizing Spanning Tree Algorithm 11

According to our experimental observations, we can conclude that in dynamic
environments in which the nodes come and go, self stabilization algorithms can be
used effectively if the runtime tradeoff is acceptable. Moreover, by using heuristics,
resulting spanning trees can be tuned according to specific purposes.

References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols
for general networks. In WDAG90: Proceedings of the 4th International Workshop on
Distributed Algorithms, pages 15–28. Springer-Verlag, 1991.
[2] M. Ahuja and Y. Zhu. A distributed algorithm for minimum weight spanning
trees based on echo algorithms. In Proceedings of the 9th International Conference on
Distributed Computing Systems, pages 2–8, 1989.
[3] G. Antonoiu and P. K Srimani. A self-stabilizing distributed algorithm to
construct an arbitrary spanning tree of a connected graph. Computers and
Mathematics with Applications, 30, 1995.
[4] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election and related problems. In Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, pages 230–240, 1987.
[5] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi. A self-stabilizing
distributed algorithm for spanning tree construction in wireless ad hoc networks.
Journal of Parallel and Distributed Computing, 63(1):97–104, 2003.
[6] L. Blin, M. G. Potop-Butucaru, and S. Rovedakis. Self-stabilizing minimum-
degree spanning tree within one from the optimal degree. In IPDPS ’09: Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed Processing,
pages 1–11. IEEE Computer Society, 2009.
[7] F. Butelle, C. Lavault, and M. Bui. A uniform self-stabilizing minimum
diameter tree algorithm (extended abstract). In WDAG ’95: Proceedings of the 9th
International Workshop on Distributed Algorithms, pages 257–272. Springer-Verlag,
1995.
[8] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.
[9] S. Dolev. Optimal time self stabilization in dynamic systems (preliminary
version). In WDAG ’93: Proceedings of the 7th International Workshop on
Distributed Algorithms, pages 160–173. Springer-Verlag, 1993.
[10] R.G. Gallagher, P.A. Humblet, and P. M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages and
Systems, 5:66–77, 1983.
[11] Felix C. Gärtner. A survey of self-stabilizing spanning-tree construction
algorithms. Technical report, 2003.
[12] S. K. Gupta and P. K. Srimani. Self-stabilizing multicast protocols for ad hoc
networks. Journal of Parallel and Distributed Computing, 63(1):87–96, 2003.

12 A Maximum Degree Self-Stabilizing Spanning Tree Algorithm

[13] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. Self-
stabilizing spanning tree algorithm for large scale systems. 4280:574–575, 2006.
[14] N. Kotowski, A. A. B. Lima, E. Pacitti, P. Valduriez, and M. Mattoso.
Parallel query processing for olap in grids. Concurr. Comput. : Pract. Exper.,
20(17):2039–2048, 2008.
[15] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2008.
[16] Y.N. Lien. A new node-join-tree distributed algorithm for minimum weight
spanning trees. In Proceedings of the 8th International Conference on Distributed
Computing System, pages 334–240, 1988.
[17] R. C. Pan, J. Z. Wang, and L. R. Chow. A self-stabilizing distributed
spanning tree construction algorithm with a distributed demon. Tamsui Oxford
Journal of Mathematical Sciences, 15:23–32, 1999.

	A_Maximum_Degree_Self-Stabilizing_Spanning_Tree_Al

