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Abstract 

Spanning trees are fundamental topological structures in distributed 
environments which ease many applications that require frequent 
communication between nodes.  Many different approaches are proposed in the 
literature for building spanning trees. Moreover, many other studies also 
consider fault tolerance and self stabilization properties while building these 
topological structures. Although there are known advantages of the self 
stabilization paradigm such as fault tolerance, tradeoffs between classical and 
self-stabilizing approaches to build spanning trees using distributed algorithms 
is not studied adequately. In this paper, we  examine and compare two similar 
existing spanning tree construction algorithms which rely on different 
paradigms: classical versus self stabilization approach and propose a new self-
stabilizing spanning tree construction algorithm which uses maximum degree 
heuristic while choosing the root node. We show experimentally that our new 
algorithm provides smaller tree diameters than the two existing approaches with 
favorable run-times. 

1. Introduction 

Spanning tree algorithms are widely used in many distributed applications. A 
spanning tree is a subset S of a graph G which contains every node in G and which 
does not contain any cycles. With the growth in the scale of distributed systems such 
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as grid systems, the need for such topological control mechanisms has gained 
significant importance. These control mechanisms decrease the complexity of 
distributed algorithms caused by the connectivity of the underlying graph. By using 
spanning trees, many distributed applications can be implemented efficiently by 
making use of their properties. Especially, algorithms which involve multicast or 
broadcast operations exploit spanning trees since many efficient specific routing and 
multicasting algorithms exist. Distributed spanning tree construction algorithms have 
gained significant importance in the last decade since in environments such as grid 
systems, it is very hard to keep system wide information to build such topologies 
centrally. Many algorithms have been developed to build different types of spanning 
trees. Several studies focus on constructing minimum spanning trees in which the sum 
of edge weights is minimized [4, 16, 2, 10]. Minimum spanning trees are useful 
especially if communication costs are required to be minimized. Studies such as [6] 
construct a minimum degree spanning tree in which degrees of vertices are 
minimized. This property helps efficient routing of messages under heavy 
communication traffic. Some other studies aim to construct minimum diameter 
spanning tree in which diameter of the resulting spanning tree is minimized [7]. This 
property helps broadcasting of messages by optimizing the distance between vertices 
in the graph. 

Besides classical distributed spanning tree construction algorithms, some of these 
studies also consider dynamicity and fault tolerance in their design. To cope up with 
the dynamicity of grid, self-stabilizing spanning tree algorithms have received 
attention recently [11]. Self-stabilizing paradigm ensures the validity of spanning tree 
structure without having the need to regenerate the spanning tree every time 
dynamicity occurs in the network. Self stabilization is a paradigm for distributed 
systems that allows the system to achieve a desired global state, even in the presence 
of faults. The concept of self stabilization was introduced in 1974 by Dijkstra [8]. The 
idea of self-stabilizing algorithms is that independently of the global state of the 
system, after a finite amount of time the system will reach to a correct global state. In 
a self-stabilizing algorithm, each node maintains local variables, and changes its state 
according to only on its local variables and the contents of its neighbors’ local 
variables. The contents of a node's local variables constitute its local state and the 
union of all local states constitutes the system wide global state. Self stabilization is a 
very useful approach for the systems in which dynamicity occurs frequently, such as 
grid systems. Therefore it may be convenient to use self stabilization in such 
environments when designing distributed applications.  

In this paper, we aim to show how self stabilization property affects the 
performance of a spanning tree construction algorithm. For this purpose, for the sake 
of simplicity we selected two spanning tree construction algorithms which do not 
consider any complex spanning tree property, a classical [15] and a self-stabilizing 
spanning tree construction algorithm [1]. We have examined, analyzed, implemented 
and tested these two algorithms, and compared the test results in terms of runtime of 
the algorithms and resulting spanning tree diameters. While runtime results show the 
tradeoff between the two approaches, the diameter results ensures that the algorithms 
result in spanning trees with similar characteristics. We also propose a new self-
stabilizing spanning tree construction algorithm based on [1] which considers degrees 
of nodes in determining the root node of the resulting spanning tree. This heuristic is 
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based on the observation that a root node will be involved in more frequent 
communications than the rest therefore it would be sensible that this node should have 
the property of having a higher degree than the average. We show that the resulting 
algorithm provides trees with the smaller diameters than the other two algorithms and 
also has favorable execution times experimentally.  The rest of this paper is organized 
as follows: Section 2 gives background about the recent spanning tree construction 
algorithms. Section 3 examines the two selected spanning tree algorithms by giving 
detailed analysis. The new self-stabilizing spanning tree algorithm is described in 
Section 4 and the implementation details of the three algorithms is given in Section 5. 
Finally in Conclusion, the tradeoffs and comparisons and advantages of the new 
algorithm are examined. 

2. Background 

2.1. Self-stabilizing spanning tree algorithms 

In [14], Kotowski and Kuszner proposed two self-stabilizing algorithms to find 
spanning tree in a polynomial number of rounds. In their study, they have 
distinguished a root node for the spanning tree construction. In their first algorithm, 
each node chooses the minimum id neighbor as its parent node. The root node has 
always id 0. In their second algorithm, each node holds a variable and the nodes use 
this variable to choose their parents instead of id numbers.  

In [3], Antonoiu and Srimani proposed a self-stabilizing minimum spanning tree 
construction algorithm. In their design they assume that the edges in the graph have 
unique weights. They defined a reference node, root node, which is assumed to be 
privileged only once and can never be privileged again after it takes action. All other 
nodes take action according to the path specification between them and the root node. 
The difference between the rules for the root node and other nodes makes this 
algorithm a semi-uniform algorithm. At the end of the execution, a minimum 
spanning tree is constructed.  

Gupta and Srimani proposed two self-stabilizing spanning tree algorithms in [12]. 
They consider ad-hoc networks as the system model in their design. In their first 
algorithm they construct s shortest path spanning tree in the ad-hoc network, while in 
their second algorithm, they built a minimum spanning tree. Both of those algorithms 
rely on the existence of a specified root node. The root node is assumed to be stable in 
the sense that it won’t leave the system.  

Blin et al. proposed a self-stabilizing algorithm to find minimum degree spanning 
tree in a network in [6]. They take the study proposed in [1] as a base and they 
improve the algorithm by adding a degree reduction module which decreases the 
degree of the resulting spanning tree in each round. As in [1], this algorithm is also 
prone to the failure of the root node.   

Butelle et al. presented a uniform self-stabilizing algorithm which finds a 
minimum diameter spanning tree of an arbitrary positively real-weighted graph [7]. 
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They have designed their algorithm to consist of two phases. In the first phase, a 
uniform randomized stabilizing unique naming protocol is designed in order to break 
the symmetry in the graph. In the second phase, they developed a self-stabilizing 
minimum diameter spanning tree protocol. Their algorithm relies on a center node in 
the network. The center node is used as the root node of the tree, and is determined in 
a self-stabilizing fashion.  

In [13], Herault et al. proposed a self-stabilizing spanning tree algorithm for large 
scale systems. They use only two assumptions in their design. First assumption is that 
each node is equipped with a service that keeps a list of the node’s neighbors. The 
second assumption is the existence of a failure detection service. By taking these 
assumptions into consideration, they proposed an algorithm in which each node starts 
being its own root. The roots try to merge their trees by asking each other to join by 
looking and comparing their identifiers. At the end of the algorithm, the biggest id 
node becomes the root of the final tree. 

Pan et al. proposed a self-stabilizing spanning tree construction algorithm based on 
a self-stabilizing maximum finding method [17]. In their algorithm they find the 
maximum identifier and determine distances of each node to the maximum identifier 
node. They insert parent relations according to the distances of the nodes. At the end, 
the algorithm finds a BFS spanning tree. Since the algorithm does not require having 
a root node initially, it is prone to root node dynamicity.  

Baala et al. presented a random walk based spanning tree construction algorithm 
which is self-stabilizing [5]. Their algorithm is based on random walk strategy which 
is executed by independent mobile agents. The agents are merged into a spanning tree 
when they meet each other regarding their color values. The final merged spanning 
tree constitutes a coherent spanning tree of the whole system. This algorithm is a 
uniform algorithm in which all nodes run the same algorithm. The root node is 
determined at the end of the algorithm, therefore this system does not require having a 
predetermined special root node. It is prone to node failures including the failure of 
the root node. 

Dolev et al. proposed a uniform BFS spanning tree algorithm [9]. In their study, 
each node initiates the algorithm using its neighborhood. If the node's identifier is the 
greatest in its neighborhood, it selects itself as the root node. If it learns that there is a 
tree with a higher root identifier, the node joins to that tree by sending a joining 
request. At the end, the algorithm stabilizes and a BFS spanning tree is constructed.  

Afek et al. proposed memory-efficient self-stabilizing spanning tree algorithm for 
general networks [1]. In their paper they also consider the dynamicity of the root 
node. In their design, every node starts to create a tree rooted by it. Then trees are 
merged by taking the biggest id root as the new root 

2.2. Classical distributed spanning tree algorithms 

Kshemkalyani and Singhal examined three different types of classical distributed 
spanning tree algorithms [15]: synchronous single initiator spanning tree algorithm, 
asynchronous single initiator spanning tree algorithm and asynchronous concurrent 
initiator spanning tree algorithm. In synchronous single initiator algorithm, authors 
assume existence of a root node which initiates the algorithm. They also assume that 
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the algorithm executes in rounds. The algorithm is based on the flooding of a query 
message. The root node starts flooding, in each round a node sets the first sender of 
the message as its parent, if multiple messages are received in the same round, a 
random sender is selected as the parent. In asynchronous single-initiator algorithm, 
the same idea is used, but instead of synchronous rounds, the algorithm uses accept or 
reject messages to provide synchronization between nodes. In the third algorithm, 
called asynchronous concurrent initiator spanning tree algorithm, each node starts to 
create a spanning tree rooted by itself by sending query messages to their neighbors. 
In every received message, the node checks if the sender of the message has a bigger 
id than the current root node. If this is the case, the node joins that tree and sends a 
message to its neighbor indicating its new parent and root. Else, the node sends a 
reject message to the sender of the query, and continues its operation.   

Many other techniques and algorithms exist to generate spanning trees in graphs. 
In this paper, we only focus on simple classical spanning tree algorithms in which no 
special constraints exist.  

3. Main Algorithms 

In this section, we examine, analyze, implement and compare the two spanning 
tree construction algorithms: memory-efficient self-stabilizing spanning tree 
algorithm [1] and asynchronous concurrent initiator spanning tree algorithm [15]. The 
main difference between these two algorithms is the self stabilization property. We 
aim to examine the influence of the self stabilization property on the performance of 
spanning tree construction. 

3.1. Memory-efficient self-stabilizing spanning tree algorithm 

In [1], authors propose a self-stabilizing spanning tree construction algorithm. 
They assume that nodes have unique identifiers and every node knows its neighbors. 
They also assume that nodes are aware of their neighbors’ states; in other words, 
when a node fails, neighbors of the failed node notice this failure and update their 
neighbor lists. In this model, every node runs the same algorithm. At the beginning, 
each node tries to construct a spanning tree rooted at itself. Then the independent trees 
merge with each other considering the id of their roots. The larger process id overruns 
the process of lower id nodes. At the end, the biggest id node overruns all the 
remaining processes and becomes the root of the final spanning tree. 

Each node i has local variables indicating its neighborhood (Ni), its parent node 
(Pi), its root node (Ri) and its distance to the root node (Di). In the global legal state, 
each node has the same root with the biggest node id in the graph, parents of nodes 
are within their neighborhood and distance of each node is 1 bigger than its parent’s 
distance (Di = Dparent + 1). The root node has distance 0, and points to itself as its root 
and its parent. The algorithm runs in an infinite loop and checks the legal state 
conditions continuously. To achieve self stabilization, each node compares its 
neighbors’ roots with its root node. If any neighbor has a bigger id root, then the node 
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sends a request message to the bigger id root through its neighbor in order to join its 
tree. When a root node receives such a message it replies with a grant message and 
allows that node to join its tree.  

The algorithm checks two conditions to determine whether it is in a legal state or 
not:  
A:  [(Ri = i) Λ (Pi = i) Λ (Di = 0)] V [(Ri > i) Λ (Pi Є Ni) Λ (Ri = Rparent) Λ  

(Distance = Dparent + 1 > 0)] 
 
B:  A Λ (Ri >= max(RNi)) 
 
Condition A states that either the node is a root node; or the node is not a root node, 
its root is bigger than its id and same as its parent’s root, its parent is in its 
neighborhood and its distance to the root is 1 bigger than its parent’s distance. 
Condition B states that condition A is true and node’s root is the biggest among its 
neighbors’ roots. When both A and B are true, the node is considered to be in the 
legal state. The algorithm checks these two conditions and takes action according to 
their correctness. When both conditions are false, then the node is in an illegal state 
and sets itself as the root node of its own tree. If condition A is true and node’s root is 
not the biggest id node within its neighbors’ roots, then the node chooses to join to the 
tree with bigger root id. To realize this, the node sends a request message to the 
biggest id root within its neighbors’ roots through its neighbors. If the condition B is 
true, then the node is in the legal state. The algorithm also takes other actions in order 
to relay messages while checking these conditions. In case of failure of an inner node 
in the tree, the children of the failed node notice this failure and switch to the illegal 
state because of the failure of condition A. This failure triggers self stability property 
of this algorithm and relevant nodes take action in order to stabilize the spanning tree.  

3.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm 

The asynchronous concurrent initiator spanning tree algorithm [15] is a basic 
classical distributed spanning tree construction algorithm in which nodes only need to 
know their neighborhood information. The algorithm does not ensure self stability 
property. It uses flooding in order to disseminate tree information to neighbors. Each 
node starts to build its own tree rooted at itself at the beginning. When a node wants 
to initiate the algorithm as a root, then it sends a query message to its neighborhood 
indicating that it is a root node. When a node receives a query message it compares 
the id of the sender with the id of its root, if new root has a bigger id then the node 
changes its root to the new root. In this case if the node is a leaf node then it sends an 
accept message, if not it sends a query message to its neighborhood indicating its new 
root. If new root id is smaller than current root of the node, then the node sends a 
reject message to the sender of the query message. When a node receives an accept 
message, then it adds the sender node to its children list. If that node is an initiator 
then it finishes its execution upon receiving accept messages from all its neighbors, if 
the node is a relay node, it sends accept message to its parent upon receiving accept 
messages from all its neighbors. When a node receives a reject message then it sends 
an accept message to its parent. More details about the algorithm can be seen in Fig.1.  
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1. If parent is undefined 
2. My parent = my id 
3. My root = my id 
4. Send QUERY message to all neighbors indicating that I am the root node 
 
Upon receiving a message 
 
5. If received message type is QUERY 
6. If my root < received root 
7.  My parent = sender of the message 
8.  My root  = received root   
9.  If I am a leaf node 
10.   Send ACCEPT message to the sender of the message 
11.  Else 
12.   Send QUERY message indicating my root to my neighbors  
13. If my root > received root 
14.  Send REJECT message to the sender 
 
15. If received message type is ACCEPT 
16. If my root is same with the received root 
17.  Add sender node to my children list 
18.  If all my neighbors have replied to my QUERY 
19.   If I am the root terminate 
20.   Else send ACCEPT message to my parent 
 
21. If received message type is REJECT 
22. If received root is same with my root 
23.  If all my neighbors have replied to my QUERY 
24.   If I am the root terminate  
25.   Else send ACCEPT message to my parent 

Fig.1 Asynchronous concurrent initiator spanning tree algorithm 

4. Maximum Degree Self-Stabilizing Spanning Tree (MDST) 
Algorithm 

We propose an extended version of memory-efficient self-stabilizing spanning tree 
algorithm which considers degrees of nodes while selecting the root node. In [1], the 
algorithm constructs the spanning tree according to the id of the nodes by choosing 
the biggest id node as the root node. This heuristic may have some disadvantages in 
complex networks because it does not consider the suitability of the chosen node as a 
root node. In many situations, predefined constraints are advantageous in choosing the 
root node. For instance, choosing the biggest degree node as the root, or choosing the 
center of the graph as the root node may be preferable if the desired operation is 
broadcasting or multicasting. On the other hand, simple and straightforward nature of 
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memory-efficient self-stabilizing spanning tree algorithm makes it preferable because 
of its low complexity measures. For these reasons, we propose to modify the memory-
efficient self-stabilizing spanning tree algorithm so that it constructs a spanning tree 
rooted at the biggest degree node. The assumption here is that the biggest id node in 
the graph is a better candidate to be a root node than a randomly chosen root, because 
this choice may decrease the diameter of the resulting spanning tree since this choice 
may decrease the height of the tree. To realize this, we first propose to use a simple 
hash function which combines degrees of nodes with their node ids. We called the 
resulting hash number as the tag of a node. This function inserts the degree of a node 
to the most significant part of the tag, and it inserts ids to the least significant part of 
the tag number. It normalizes the least significant part by inserting zeros at the 
beginning of the node ids. At the end, each node has a unique tag value which is 
sorted by nodes’ degrees. The algorithm considers tag values in determining root of 
the nodes. The basic idea of our algorithm is the same with memory-efficient self-
stabilizing spanning tree algorithm; the only difference is the usage of tag values 
instead of real ids of the nodes in determining root node. At the end of the execution 
of the MDST algorithm, a spanning tree rooted at the highest degree node is 
constructed. 

5. Implementation and Experiments 

We have implemented the three algorithms in the network simulator ns2. For the 
self-stabilizing algorithms, we have simulated failure detection module by using 
periodical messaging between neighboring nodes. Each node periodically sends a 
message to all its neighbors indicating its variables (root, parent and distance). If any 
message is not received from a neighbor in 2 periods then the node assumes that this 
neighbor has failed, and takes action. In both algorithms, we used UDP protocol for 
messaging. We did not use broadcast packet messages since ns2 does not support 
broadcast messages in wired network scenarios.  

We have generated 8 experiment scenarios by using randomly chosen wired 
network topologies ranging from 100 to 800 nodes. In self-stabilizing algorithms, the 
periods of status updates and self-stabilizing loops affect the runtime of the algorithm 
drastically. For that reason, we tried to choose the update interval as small as possible 
that ns2 allows.  

Runtime results of the algorithms can be seen in Fig.2. The difference between 
classical distributed approach and self-stabilizing approach is mainly caused by 
periodical updates in self-stabilizing algorithms. The effect of self stabilization 
property is magnified as the number of nodes is increased. While the runtime of 
asynchronous concurrent initiator spanning tree algorithm remains nearly constant, 
the runtime of self-stabilizing algorithms increases. But it is also seen that this 
increase is sub-linear with respect to the increase in the number of nodes which 
ensures the scalability of these algorithms. 

The run-times of the algorithms with respect to the number of nodes is shown in 
Fig.2. It may be observed that MDST performs much better than the original self-
stabilizing spanning tree algorithm. The difference is more evident for greater number 
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of nodes. Fig.3 depicts the variation diameters of resulting spanning trees by using 
three different algorithms. The diameter of a tree is an important measure which is 
defined as the minimum distance between the two most distant nodes in the tree. It 
affects the performance of algorithms like routing and broadcasting algorithms, which 
use resulting spanning tree’s properties. It may be seen that both memory-efficient 
self-stabilizing spanning tree algorithm and asynchronous concurrent initiator 
spanning tree algorithm have resulted in similar results in terms of tree diameters, 
while MDST algorithm has resulted in smaller diameter spanning trees. This 
difference is caused by the heuristic which is used in choosing the root node.   

 

 
Fig.2 Runtime results of spanning tree construction algorithms 
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Fig.3 Diameter results of spanning tree construction algorithms 

 

Conclusions 

In this paper, we described, implemented and compared simulation results of two 
basic existing spanning tree construction algorithms which rely on different 
paradigms. We also proposed a new self-stabilizing spanning tree algorithm which 
relies on choosing the maximum degree node as the root. We showed the differences 
and similarities between self-stabilizing and classical approaches in terms of 
experiment results, and proposed a new algorithm. According to the implementation 
results we can say that both classical and self-stabilizing spanning tree algorithms 
behave similarly in terms of resulting spanning tree’s degrees if the constraints are 
also similar. In MDST algorithm, with the use of maximum degree heuristic, the 
diameter of the resulting spanning tree is decreased. According to the runtime results, 
we can say that self-stabilizing spanning tree algorithms are more sensible to the 
number of nodes than the classical approach. This difference is mainly caused by 
periodic updates of the nodes and self stabilization property. Although runtime of the 
self-stabilizing spanning tree algorithms increase when the size of the network grows, 
this increase is neither exponential nor linear. This sub-linear increase proves the 
scalability of the self-stabilizing algorithms as investigated in this study. The benefit 
is the self stabilization property which can drastically decrease the maintenance costs 
of spanning trees in large networks.  
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According to our experimental observations, we can conclude that in dynamic 
environments in which the nodes come and go, self stabilization algorithms can be 
used effectively if the runtime tradeoff is acceptable. Moreover, by using heuristics, 
resulting spanning trees can be tuned according to specific purposes.  
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