Skip to main content

Management and Lesion Detection Effects of Lossy Image Compression on Digitized Mammograms

  • Chapter
Digital Mammography

Part of the book series: Computational Imaging and Vision ((CIVI,volume 13))

  • 356 Accesses

Abstract

Radiology is increasingly embracing digital technologies in an effort to provide patients with better and more cost effective care. Mammography in particular should soon see the widespread deployment of Full Field Digital Mammography (FFDM) systems. The benefits such systems promise are numerous, yet come with new challenges. Two challenges stand out: how to display very high resolution digital images, and how to transmit and store the large volumes of digital image data. This paper addresses aspects of the latter challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York, 1991.

    Book  Google Scholar 

  2. B. J. Betts, A. Aiyer, J. Li, S. M. Perlmutter, P. C. Cosman, C. N. Adams, K. O. Perl-mutter, S. Horine, L. Fajardo, R. Birdwell, B. L. Daniel, S. Rossiter, M. Williams, D. Ikeda, R. A. Olshen, and R. M. Gray, “Compression and Classification of Digital Mammograms for Storage, Transmission, and Computer Aided Screening.” In Proceedings of the Department of Defense Breast Cancer Research Program Committee Meeting, November 1997. (Available at Web site [11].)

    Google Scholar 

  3. S. M. Perlmutter, P. C. Cosman, R. M. Gray, R. A. Olshen, D. Ikeda, C. N. Adams, B. J. Betts, M. Williams, K. O. Perlmutter, J. Li, A. Aiyer, L. Fajardo, R. Birdwell, and B. L. Daniel, “Image Quality in Lossy Compressed Digital Mammograms,” Signal Processing, Special Issue on Medical Image Compression, 59(2):189–210, June 1997. (Available at Web site [11].)

    Article  Google Scholar 

  4. C. N. Adams, A. Aiyer, B. J. Betts, J. Li, P. C. Cosman, S. M. Perlmutter, K. O. Perl-mutter, D. Ikeda, L. Fajardo, R. Birdwell, B. L. Daniel, S. Rossiter, R. A. Olshen, and R. M. Gray, “Evaluating Quality and Utility of Digital Mammograms and Lossy Compressed Digital Mammograms.” In K. Doi et al., editors, Digital Mammography ′96, pages 169–176, Amsterdam, 1996. Elsevier. (Available at Web site [11].)

    Google Scholar 

  5. P. Cosman, R. Gray, and R. Olshen, “Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy,” Proceedings of the IEEE, 82(6):919–932, June 1994.

    Article  Google Scholar 

  6. A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, 6(3):243–250, June 1996.

    Article  Google Scholar 

  7. M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice Hall, New Jersey, 1995.

    Google Scholar 

  8. J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, Special Issue on Wavelets and Signal Processing, 41(12):3445–3462, December, 1993.

    Google Scholar 

  9. I. McNemar, “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages,” Psychometrika, 12:153–157, 1947.

    Article  PubMed  CAS  Google Scholar 

  10. E. L. Lehmann. Testing Statistical Hypotheses. Springer-Verlag, New York, 2nd edition, 1986.

    Google Scholar 

  11. Stanford University Compression and Classification Group, “Digital Mammography Image Quality Project,” http://www-isl.stanford.edu/~gray/army.html/~gray/army.html, 1996.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Betts, B.J. et al. (1998). Management and Lesion Detection Effects of Lossy Image Compression on Digitized Mammograms. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds) Digital Mammography. Computational Imaging and Vision, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5318-8_74

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5318-8_74

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6234-3

  • Online ISBN: 978-94-011-5318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics