Abstract
Radiology is increasingly embracing digital technologies in an effort to provide patients with better and more cost effective care. Mammography in particular should soon see the widespread deployment of Full Field Digital Mammography (FFDM) systems. The benefits such systems promise are numerous, yet come with new challenges. Two challenges stand out: how to display very high resolution digital images, and how to transmit and store the large volumes of digital image data. This paper addresses aspects of the latter challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York, 1991.
B. J. Betts, A. Aiyer, J. Li, S. M. Perlmutter, P. C. Cosman, C. N. Adams, K. O. Perl-mutter, S. Horine, L. Fajardo, R. Birdwell, B. L. Daniel, S. Rossiter, M. Williams, D. Ikeda, R. A. Olshen, and R. M. Gray, “Compression and Classification of Digital Mammograms for Storage, Transmission, and Computer Aided Screening.” In Proceedings of the Department of Defense Breast Cancer Research Program Committee Meeting, November 1997. (Available at Web site [11].)
S. M. Perlmutter, P. C. Cosman, R. M. Gray, R. A. Olshen, D. Ikeda, C. N. Adams, B. J. Betts, M. Williams, K. O. Perlmutter, J. Li, A. Aiyer, L. Fajardo, R. Birdwell, and B. L. Daniel, “Image Quality in Lossy Compressed Digital Mammograms,” Signal Processing, Special Issue on Medical Image Compression, 59(2):189–210, June 1997. (Available at Web site [11].)
C. N. Adams, A. Aiyer, B. J. Betts, J. Li, P. C. Cosman, S. M. Perlmutter, K. O. Perl-mutter, D. Ikeda, L. Fajardo, R. Birdwell, B. L. Daniel, S. Rossiter, R. A. Olshen, and R. M. Gray, “Evaluating Quality and Utility of Digital Mammograms and Lossy Compressed Digital Mammograms.” In K. Doi et al., editors, Digital Mammography ′96, pages 169–176, Amsterdam, 1996. Elsevier. (Available at Web site [11].)
P. Cosman, R. Gray, and R. Olshen, “Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy,” Proceedings of the IEEE, 82(6):919–932, June 1994.
A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, 6(3):243–250, June 1996.
M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice Hall, New Jersey, 1995.
J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, Special Issue on Wavelets and Signal Processing, 41(12):3445–3462, December, 1993.
I. McNemar, “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages,” Psychometrika, 12:153–157, 1947.
E. L. Lehmann. Testing Statistical Hypotheses. Springer-Verlag, New York, 2nd edition, 1986.
Stanford University Compression and Classification Group, “Digital Mammography Image Quality Project,” http://www-isl.stanford.edu/~gray/army.html/~gray/army.html, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Betts, B.J. et al. (1998). Management and Lesion Detection Effects of Lossy Image Compression on Digitized Mammograms. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds) Digital Mammography. Computational Imaging and Vision, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5318-8_74
Download citation
DOI: https://doi.org/10.1007/978-94-011-5318-8_74
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-6234-3
Online ISBN: 978-94-011-5318-8
eBook Packages: Springer Book Archive