Skip to main content

A Numerical Verification Method of Solutions for the Navier-Stokes Equations

  • Chapter
Developments in Reliable Computing

Abstract

A numerical verification method of the solution for the stationary Navier-Stokes equations is described. This method is based on the infinite dimensional fixed point theorem using the Newton-like operator. We present a verification algorithm which generates automatically on a computer a set including the exact solution. Some numerical examples are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  2. Girault, V. and Raviart, P. A.: Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, Heidelberg, 1986.

    Google Scholar 

  3. Kearfott, R. B. and Kreinovich, V.: Applications of Interval Computations, Kluwer Academic Publishers, Netherlands, 1996.

    Book  MATH  Google Scholar 

  4. Knüppel, O.: PROFIL/BIAS-A Fast Interval Library, Computing 53 (1994), pp. 277–287.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kulisch, U. et. al.: C-XSC, A C++ Class Library for Extended Scientific Computing, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  6. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow, Gordon Breach, New York, 1969.

    MATH  Google Scholar 

  7. Nakao, M. T.: A Numerical Verification Method for the Existence of Weak Solutions for Nonlinear Boundary Value Problems, J. Math. Anal. Appl. 164 (1992), pp. 489–507.

    Article  MathSciNet  MATH  Google Scholar 

  8. Nakao M. T.: Solving Nonlinear Elliptic Problems with Result Verification Using an H−1 Type Residual Iteration, Computing, Suppl. 9 (1993), pp. 161–173.

    Google Scholar 

  9. Nakao, M. T., Yamamoto, N., and Kimura, S.: On Best Constant in the Optimal Error Estimates for the Ho-projection into Piecewise Polynomial Spaces, J. Approximation Theory 93 (1998), pp. 491–500.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nakao, M. T., Yamamoto, N., and Watanabe, Y.: A Posteriori and Constructive A Priori Error Bounds for Finite Element Solutions of the Stokes Equations, J. Comput. Appl. Math. 91 (1998), pp. 137–158.

    Article  MathSciNet  MATH  Google Scholar 

  11. Nakao, M. T., Yamamoto, N., and Watanabe, Y.: Constructive L2 Error Estimates for Finite Element Solutions of the Stokes Equations, Reliable Computing 4 (2) (1998), pp. 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. Nakao, M. T., Yamamoto, N., and Watanabe, Y.: Guaranteed Error Bounds for the Finite Element Solutions of the Stokes Problem, in: Alefeld, G., Frommer, A., and Lang, B. (eds): Scientific Computing and Validated Numerics, Proceedings of International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics SCAN-95, Mathematical Research 90 (1996), pp. 258–264.

    Google Scholar 

  13. Rump, S. M.: On the Solution of Interval Linear Systems, Computing 47 (1992), pp. 337–353.

    Article  MathSciNet  MATH  Google Scholar 

  14. Talenti, G.: Best Constant in Sobolev Inequality, Ann. Math. Pure Appl. 110 (1976), pp 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  15. Watanabe, Y., and Nakao, M. T.: Numerical Verifications of Solutions for Nonlinear Elliptic Equations, Japan J. Indust. Appl. Math. 10 (1993) pp. 165–178.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yamamoto, N.: A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach’s Fixed-point Theorem, SIAM J. Numer. Anal. 35 (1998) pp. 2004–2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watanabe, Y., Yamamoto, N., Nakao, M.T. (1999). A Numerical Verification Method of Solutions for the Navier-Stokes Equations. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1247-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5350-3

  • Online ISBN: 978-94-017-1247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics