Skip to main content

A Gaussian Process Based Method for Antenna Design Optimization

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 575))

  • 1746 Accesses

Abstract

In many expensive or time consuming engineering problems, like antenna design problems, it is unpractical to use the evolutionary algorithms directly. In recent years, Gaussian process has attracted more and more attention and had some successful applications. To further accelerate the speed of antenna design optimization process, a Gaussian process and fuzzy clustering assisted differential evolution algorithm(GPFCDEA) is presented in this paper. Four benchmark functions and two antenna design problems are selected as examples. Experimental results indicate that GPFCDEA performs much better than DE for low dimensions problems. However, for high dimensions problems, the performance of GPFCDEA still needs further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. John, M., Ammann, M.: Antenna optimization with a computationally efficient multiobjective evolutionary algorithm. IEEE Trans. Antennas Propag. 57(1), 1–24 (2009)

    Article  Google Scholar 

  2. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  3. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003)

    Article  Google Scholar 

  4. MacKay, D.J.C.: Introduction to Gaussian processes. NATO ASI Ser. F Comput. Syst. Sci. 168, 133–166 (1998)

    MATH  Google Scholar 

  5. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  MATH  Google Scholar 

  6. Sacks, J., Welch, W.J., Mitchell, T.J., et al.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Su, G.: Gaussian process assisted differential evolution algorithm for computationally expensive optimization problems. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, pp. 1:272–1:276. IEEE (2008)

    Google Scholar 

  8. Liu, B., Aliakbarian, H., Ma, Z., et al.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 62(1), 7–18 (2014)

    Article  Google Scholar 

  9. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  10. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Seo, S., Wallat, M., Graepel, T., et al.: Gaussian process regression: active data selectionand test point rejection. In: Mustererkennung 2000, pp. 27–34. Springer, Heidelberg (2000)

    Google Scholar 

  12. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Boston (1981)

    Book  MATH  Google Scholar 

  13. Zhang, Q., Liu, W., Tsang, E., et al.: Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)

    Article  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach To Global Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Zhang, L., Cui, Z., Jiao, Y.C., et al.: Broadband patch antenna design using differential evolution algorithm. Microw. Opt. Technol. Lett. 51(7), 1692–1695 (2009)

    Article  Google Scholar 

  17. Liu, Z., Zeng, S., Jiang, Y., et al.: Evolutionary design of a wide-band twisted dipole antenna for X-band application. In: 2013 IEEE International Conference on Evolvable Systems (ICES), pp. 9–12. IEEE (2013)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China and other foundations(No.s: 61271140, 61203306, 2012001202, 61305086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyou Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Zhang, J., Zeng, S., Jiang, Y., Li, X. (2016). A Gaussian Process Based Method for Antenna Design Optimization. In: Li, K., Li, J., Liu, Y., Castiglione, A. (eds) Computational Intelligence and Intelligent Systems. ISICA 2015. Communications in Computer and Information Science, vol 575. Springer, Singapore. https://doi.org/10.1007/978-981-10-0356-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0356-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0355-4

  • Online ISBN: 978-981-10-0356-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics