Skip to main content

A Novel WDM-PON Based on Quantum Key Distribution FPGA Controller

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 575))

  • 1696 Accesses

Abstract

A novel wavelength-division-multiplexed passive optical network base on quantum key distribution FPGA controller is presented here. QKD FPGA is responsible for 1.25 Gbps upstream PRBS source, clock regeneration, phase modulation control, key sifting, privacy amplification, and upstream time-divided-multiple-access control on quantum channels. An 8-user network experiment shows that over 20 km fiber, the mean secure exchange key rate can reach up to 500 bps in total, with the acceptable quantum bit error rate below safe limit and few impact on classical channels. This scheme can provide a promising way for the coexistence between quantum key distribution and classical data service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: India Proceeding of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, vol. 175 (1984)

    Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  Google Scholar 

  4. Li, J., Kim, K.: Hidden attribute-based signatures without anonymity revocation. Inf. Sci. 180(9), 1681–1689 (2010). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, J., Wang, Q., Wang, C., Ren, K.: Enhancing attribute-based encryption with attribute hierarchy. Mobile Networks and Applications (MONET) 16(5), 553–561 (2011). Springer

    Article  Google Scholar 

  6. Wu, Z., Liang, B., You, L., Jian, Z., Li, J.: High dimension space projection-based biometric encryption for fingerprint with fuzzy minutia. Soft Comput. (2015, in Press). doi:10.1007/s00500-015-1778-2

    Google Scholar 

  7. Wang, S., Chen, W., Guo, J.-F., Yin, Z.-Q., Li, H.-W., Zhou, Z., Guo, G.-C., Han, Z.-F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008–1010 (2012)

    Article  Google Scholar 

  8. Li, J., Chen, X., Li, M., Li, J., Lee, P., Lou, W.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2014)

    Article  Google Scholar 

  9. Ciurana, A., Mart´ınez-Mateo, J., Peev, M., Poppe, A., Zbinden, N., Ciurana, H., Martin, V.: Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22(2), 1576–1593 (2014)

    Article  Google Scholar 

  10. Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60, 3071–3079 (2012)

    Article  Google Scholar 

  11. Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385(6611), 47–49 (1997)

    Article  Google Scholar 

  12. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DRAPA quantum network. In: Proceeding of SPIE, Quantum Information and Computation III, 5815, p. 138 (2005)

    Google Scholar 

  13. Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Article  Google Scholar 

  14. Chen, W., Han, Z.F., et al.: Field experiment on a “star type” metropolitan quantum key distribution network. IEEE Photonics Technol. Lett. 21(9), 575–577 (2009)

    Article  MathSciNet  Google Scholar 

  15. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  Google Scholar 

  16. Runser, R.J., Chapuran, T., et al.: Progress toward quantum communication networks: opportunities and challenges. In: Proceeding of SPIE, Optoelectronic Integrated Circuits IX, vol. 6476, p. 64760I (2007)

    Google Scholar 

  17. Bing, Q., Wen, Z., Li, Q., Hoi-Kwong, L.: Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12, 103042 (2010)

    Article  Google Scholar 

  18. Patel, K.A., Dynes, J.F., Choi, I., Sharpe, A.W., Dixon, A.R., Yuan, Z.L., Penty, R.V., Shields, A.J.: Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2, 041010 (2012)

    Google Scholar 

  19. Choi, I., Young, R.J., Townsend, P.D.: Quantum information to the home. New J. Phys. 13, 063039 (2011)

    Article  Google Scholar 

  20. Hao, W., et al.: A GPON network architecture with integrated QKD service. Acta Photonica Sin. 43, sup.1 (2014)

    Google Scholar 

  21. Choi, I., Young, R.J., Townsend, P.D.: Quantum key distribution on a 10 Gb/s WDM-PON. Opt. Express 18(9), 9600–9612 (2010)

    Article  Google Scholar 

  22. Cho, K.Y., Takushima, Y., Chung, Y.C.: 10-Gb/s operation of RSOA for WDM PON. IEEE Photonics Technol. Lett. 20(18), 1533–1535 (2008)

    Article  Google Scholar 

  23. Jin, N.Z., Xue, G.Y., Yue, G., Yong, Q.H., Ming, L.Z., Yan, G.Z.: A novel bidirectional RSOA based WDM-PON with downstream DPSK and upstream re-modulated OOK data. In: IEEE ICTON 2009

    Google Scholar 

  24. Guo, Q., Tran, A.V.: Reduction of backscattering noise in 2.5 and 10 Gbit/s RSOA-based WDM-PON. Electron. Lett. 47(24), 1333–1335 (2011)

    Article  Google Scholar 

  25. Keuo, Y.C., Yong, J.L., Hyeon, Y.C., Ayako, M., Akira, A., Yuichi, T., Yun, C.C.: Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. IEEE J. Lightwave Technol. 27(10), 1286–1295 (2009)

    Article  Google Scholar 

  26. Peters, N.A., et al.: Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 11, 045012 (2009)

    Article  Google Scholar 

  27. Lutkenhaus, N.: Estimates for practical quantum cryptography. Phys. Rev. A 59(5), 3301–3319 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Wang, Y., Wen, H., Jian, Z., Wu, Z. (2016). A Novel WDM-PON Based on Quantum Key Distribution FPGA Controller. In: Li, K., Li, J., Liu, Y., Castiglione, A. (eds) Computational Intelligence and Intelligent Systems. ISICA 2015. Communications in Computer and Information Science, vol 575. Springer, Singapore. https://doi.org/10.1007/978-981-10-0356-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0356-1_63

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0355-4

  • Online ISBN: 978-981-10-0356-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics