Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 436))

Abstract

Kaveh and Mahdavi proposed a new metaheuristic method in 2014 known as colliding bodies optimization (CBO). The algorithm is based on the principle of collision between bodies (each has a specific mass and velocity). The collision makes the bodies move toward the optimum position in the search space. This paper deals with the multi-objective formulation of CBO termed as MOCBO. Simulation studies on benchmark functions Schaffer N1, Schaffer N2, and Kursawe have demonstrated the superior performance of the MOCBO over multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance analysis are carried out for the proposed and benchmark algorithms in identical platforms using response matching between obtained and true Pareto front; the convergence matric, diversity matric, and computational efficiency achieved over fifty independent runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Google Scholar 

  2. Coello Coello, C.A.: Evolutionary multi-objective optimization. A historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Google Scholar 

  3. Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63(5), 912–942 (2012)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm. NSGA-II: IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  5. Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Google Scholar 

  6. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC-03), Australia, pp. 862–869 (2003)

    Google Scholar 

  7. Coello Coello, C.A., Corts, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Programm. Evolvable Mach. 6(2), 163–190 (2005)

    Google Scholar 

  8. Niu, B., Wang, H., Wang, J., Tan, L.: Multi-objective bacterial foraging optimization. Neurocomputing 116, 336–345 (2013)

    Google Scholar 

  9. Akbari, R., Hedayatzadeh, R., Ziarati, K., Hassanizadeh, B.: A multi-objective artificial bee colony algorithm. Swarm Evol. Comput. 2, 39–52 (2012)

    Google Scholar 

  10. Pradhan, P.M., Panda, G.: Solving multiobjective problems using cat swarm optimization. Expert Syst. Appl. 39(3), 2956–2964 (2012)

    Google Scholar 

  11. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)

    Google Scholar 

  12. Hassanzadeh, H.R., Rouhani, M.: A multi-objective gravitational search algorithm. In: Proceedings IEEE Second International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 7–12 (2010)

    Google Scholar 

  13. Nanda, S.J., Panda, G.: Automatic clustering algorithm based on multi-objective Immunized PSO to classify actions of 3D human models. Eng. Appl. Artif. Intell. 26(5), 1429–1441 (2013)

    Google Scholar 

  14. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Google Scholar 

  15. Kaveh, A.: Colliding bodies optimization. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures, pp. 195–232. Springer (2014)

    Google Scholar 

  16. Kaveh, A., Ilchi Ghazaan, M.: Computer codes for colliding bodies optimization and its enhanced version. Int. J. Optim. Civil Eng. 4(3), 321–339 (2014)

    Google Scholar 

  17. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization method for optimum discrete design of truss structures. Comput. Struct. 139, 43–53 (2014)

    Google Scholar 

  18. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv. Eng. Softw. 70, 1–12 (2014)

    Google Scholar 

  19. Kaveh, A., Shokohi, F., Ahmadi, B.: Analysis and design of water distribution systems via colliding bodies optimization. Int. J. Optim. Civil Eng. 4(2), 165–185 (2014)

    Google Scholar 

  20. Panda, A., Pani, S.: A new model based on colliding bodies optimization for identification of Hammerstein plant. In: Proceedings of IEEE Annual India Conference (INDICON-2014), pp. 1–5 (2014)

    Google Scholar 

  21. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York, USA (2001)

    Google Scholar 

  22. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnapurna Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Arnapurna Panda, Sabyasachi Pani (2016). Multi-objective Colliding Bodies Optimization. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 436. Springer, Singapore. https://doi.org/10.1007/978-981-10-0448-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0448-3_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0447-6

  • Online ISBN: 978-981-10-0448-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics