Skip to main content

Parallel and Reconfigurable Mesh Architecture for Low and Medium Level Image Processing Applications

  • Conference paper
  • First Online:
Advances in Ubiquitous Networking 2 (UNet 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 397))

Included in the following conference series:

  • 1202 Accesses

Abstract

Image processing and especially real time image processing is a very compute intensive task. Nowadays, with the high volume of data to be processed and the increasing size of images, the development of image processing architectures is very required, but most cases of architectures are mostly limited to one single task. This work introduces a parallel Reconfigurable Mesh architecture called RMC (Reconfigurable Mesh Computer) suitable for image processing applications. This architecture provides the flexibility of a programmable architecture and performance of a dedicated circuit, geared to the efficient parallel execution of low and medium level image processing operations. These processing operations derive abstractions from the image pixels so that it can help in further decision making about image. Before describing the proposed architecture, this paper reviews the criteria to be taken into consideration to compare image processing architecture, reinforced by an illustration of some hardware image processing architectures. We also identify some performed applications on RMC, to finally conclude with our future research directions for RMC architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Skillicorn, D.B.: A taxonomy for computer architectures. Computer 21(11), 46–57 (1988)

    Article  MathSciNet  Google Scholar 

  2. Lopich, A., Dudek, P.: A SIMD cellular processor array vision chip with asynchronous processing capabilities. Regul. Pap. IEEE Trans. Circuits Syst. 58(10), 2420–2431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deguchi, K., Tago, K., Morishita, I.: Integrated parallel image processings on a pipelined MIMD multi-processor system PSM. In: 10th International Conference on Pattern Recognition, Proceedings, vol. 2, pp. 442–444 (1990)

    Google Scholar 

  4. Andújar-Muñoz, F.J., Villar-Ortiz, J.A., Sánchez, J.L., Alfaro, F.J., Duato, J.: N-Dimensional twin torus topology. IEEE Trans. Comput. 64(10), 2847–2861 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shen, H., Wang, J., Yuan, C., Wang, Z., Zheng, W.: A novel crossbar scheduling for multi-FPGA parallel sar imaging system. In: 2010 First International Conference on Pervasive Computing Signal Processing and Applications (PCSPA), pp. 394–397 (2010)

    Google Scholar 

  6. Miller, R., Prasanna, K., Stout, F., Dionisios, R.: Parallel computations on reconfigurable meshes (1993)

    Google Scholar 

  7. Kent, E.W., et al.: PIPE: pipeline image processing engine. J. Parallel Distrib. Comput. 2, 50–78 (1985)

    Google Scholar 

  8. MéRIGOT, A., Ni, Y., Devos, F.: Architectures massivement paralleles pour la vision artificielle (2009)

    Google Scholar 

  9. Siegel, H.J., Siegel, L.J., Kemmerer, F.C., Smith, S.D.: PASM: a partitionable SIMD/MIMD system for image processing and pattern recognition (1982)

    Google Scholar 

  10. Hwang, J.-J., Liu, T.-L.: Pixel-wise deep learning for contour detection (2015)

    Google Scholar 

  11. Lee, C.-Y., Leou, J.-J., Hsiao, H.-H.: Saliency-directed color image segmentation using modified particle swarm optimization (2012)

    Google Scholar 

  12. Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P.: Edge co-occurence in natural images predicts contour grouping performance (2001)

    Google Scholar 

  13. Rosenfeld, A.: Parallel algorithms for image analysis. Mod. Sig. Process. (1985)

    Google Scholar 

  14. Kushner, T., Wu, A.Y., Rosenfeld, A.: Image processing on the ZMOB. IEEE Trans. Comput. (1982)

    Google Scholar 

  15. Persa, S., Nicolescu, C., Jonker, P.: Evaluation of two real time low level image processing architecture (2000)

    Google Scholar 

  16. Segmentation d’Images IRM Cérébrales sur Architecture Massivement Parallèle (GPU), Sept 2014

    Google Scholar 

  17. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics (2007)

    Google Scholar 

  18. Qasaimeh, M., Sagahyroon, A., Shanableh, T.: FPGA-based parallel hardware architecture for real-time image classification. Comput. Imaging IEEE Trans. 1(1), 56–70 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shi, C., Yang, J., Han, Y., Cao, Z., Qin, Q., Liu, L., Wu, N.-J., Wang, Z.: A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network. Solid-State Circuits IEEE J. 49(9), 2067–2082 (2014)

    Article  Google Scholar 

  20. Moreira, A., York, B.W.: Matrix inversion in O (log n) on a scan-enhanced reconfigurable mesh computer, pp. 67–75 (1996)

    Google Scholar 

  21. Bouattane, O., Elmesbahi, J., Khaldoun, M., Rami, A.: A fast algorithm for k-nearest neighbor problem on a reconfigurable mesh computer. J. Intell. Robot. Syst. 32(3), 347–360 (2001)

    Article  MATH  Google Scholar 

  22. An efficient list-ranking algorithm on a reconfigurable mesh with shift switching (2007)

    Google Scholar 

  23. Errami, A., Khaldoun, M., Elmesbahi, J., Bouattane, O.: θ(1) Time algorithm for structural characterization of multi-leveled images and its applications on a reconfigurable mesh computer. J. Intell. Robot. Syst. 44(4), 277–290 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ihirri Soukaina or Errami Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Soukaina, I., Ahmed, E., Mohamed, K. (2017). Parallel and Reconfigurable Mesh Architecture for Low and Medium Level Image Processing Applications. In: El-Azouzi, R., Menasche, D.S., Sabir, E., De Pellegrini, F., Benjillali, M. (eds) Advances in Ubiquitous Networking 2. UNet 2016. Lecture Notes in Electrical Engineering, vol 397. Springer, Singapore. https://doi.org/10.1007/978-981-10-1627-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1627-1_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1626-4

  • Online ISBN: 978-981-10-1627-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics