Skip to main content

Fast Non-blind Image Deblurring with Sparse Priors

  • Conference paper
  • First Online:
Proceedings of International Conference on Computer Vision and Image Processing

Abstract

Capturing clear images in dim light conditions remains a critical problem in digital photography. Long exposure time inevitably leads to motion blur due to camera shake. On the other hand, short exposure time with high gain yields sharp but noisy images. However, exploiting information from both the blurry and noisy images can produce superior results in image reconstruction. In this paper, we employ the image pairs to carry out a non-blind deconvolution and compare the performances of three different deconvolution methods, namely, Richardson Lucy algorithm, Algebraic deconvolution, and Basis Pursuit deconvolution. We show that the Basis Pursuit approach produces the best results in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, L., Sun, J., Quan, L., Shum H.-Y.: Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics 26, 3, 1 (2007)

    Google Scholar 

  2. Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 2, 21–30 (2008)

    Google Scholar 

  3. Romberg, J.: Imaging via compressive sampling. IEEE Signal Process. Mag. 25, 2, 14–20 (2008)

    Google Scholar 

  4. Cotter, S. F., Rao, B. D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53, 7, pp. 2477–2488 (2005)

    Google Scholar 

  5. Malioutov, D., Cetin, M., Willsky, A.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53, 8, 3010–3022 (2005)

    Google Scholar 

  6. Hansen, P. C., Nagy, J. G., O’Leary, D. P.: Deblurring Images: Matrices, Spectra, and Filtering, Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Google Scholar 

  7. Fergus, R, Singh, B., Hertzmann, A., Roweis, S. T., Freeman, W. T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 3(2006)

    Google Scholar 

  8. Levin, A., Weiss, Y., Durand, F., Freeman, W. T.: Efficient marginal likelihood optimization in blind deconvolution. CVPR (2011)

    Google Scholar 

  9. Levin, A., Weiss, Y., Durand, F., Freeman, W. T.: Understanding and evaluating blind deconvolution algorithms. CVPR (2009)

    Google Scholar 

  10. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3) (2008)

    Google Scholar 

  11. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5) (2009)

    Google Scholar 

  12. Joshi, N., Szeliski, R., Kriegman, D. J.: Psf estimation using sharp edge prediction. CVPR (2008)

    Google Scholar 

  13. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. ECCV (1) (2010)

    Google Scholar 

  14. Levin, A., Fergus, R., Durand, F., Freeman, W. T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3) (2007)

    Google Scholar 

  15. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. NIPS, (2009)

    Google Scholar 

  16. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. CVPR (2011)

    Google Scholar 

  17. Yuan, L., Sun, J., Quan, L., Shum, H.-Y.: Progressive interscale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27(3) (2008)

    Google Scholar 

  18. Agrawal, A. Raskar, R.: Resolving objects at higher resolution from a single motion-blurred image. CVPR (2007)

    Google Scholar 

  19. Jia, J.: Single image motion deblurring using transparency. CVPR (2007)

    Google Scholar 

  20. Ben-Ezra, M. Nayar, S.: Motion-based Motion Deblurring. IEEE Trans. PAMI 26(6), 689–698, (2004)

    Google Scholar 

  21. Li, Y., Kang, S. B., Joshi, N., Seitz, S., Huttenlocher, D.: Generating sharp panoramas from motion blurred videos. CVPR (2010)

    Google Scholar 

  22. Cho, S., Wang, J., Lee, S.: Handling Outliers in NonBlind Image Deconvolution. ICCV (2011)

    Google Scholar 

  23. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Processing (2007)

    Google Scholar 

  24. Buades, A., Coll, B., Morel, J.M.: A non local algorithm for image denoising. IEEE Computer Vision and Pattern Recognition, 2, 60–65 (2005)

    Google Scholar 

  25. Portilla, J., Strela, V., Wainwright, M., Simoncelli., E. P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. on Image Processing 12, 11, 1338–1351 (2003)

    Google Scholar 

  26. Richardson, W. H.: Bayesian-based iterative method of image restoration. JOSA, A 62, 1, 55–59 (1972)

    Google Scholar 

  27. Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., and Toyama., K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 3, 664–672 (2004)

    Google Scholar 

  28. Boverman, G., Miller, E. L., Brooks, D. H., Isaacson, D., Fang, Q., Boas, D. A.: Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography. IEEE Trans. Med. Imag. 27, 6, 752–765 (2008)

    Google Scholar 

  29. Chen L. Y., Pan M. C., Pan, M. C.: Implementation of edge preserving regularization for frequency-domain diffuse optical tomography. Appl. Opt. 51, 43–54 (2012)

    Google Scholar 

  30. Chen, L. Y., Pan M. C., Pan, M. C.: Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization. Appl. Opt. 52, 1173–1182 (2013)

    Google Scholar 

  31. Figueiredo, M., Bioucas-Dias, J., Afonso, M.: Fast frame-based image deconvolution using variable splitting and constrained optimization. IEEE Workshop on Statistical Signal Processing 109–112 (2009)

    Google Scholar 

  32. Afonso, M. V., Bioucas-Dias, J. M., Figueiredo, M. A. T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 9, 2345–2356, (2010)

    Google Scholar 

  33. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004)

    Google Scholar 

  34. Lee, O., Ye, J. C.: Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography. Opt. Exp. 21, 26589–26604 (2013)

    Google Scholar 

  35. Prakash, J., Dehghani, H., Pogue, B. W., Yalavarthy, P. K.: Model-Resolution-Based Basis Pursuit Deconvolution Improves Diffuse Optical Tomographic Imaging. IEEE Trans. on Medical Imaging 33, 4, (2014)

    Google Scholar 

  36. Tico, M., Vehvilainen, M.: Estimation of motion blur point spread function from differently exposed image frames. IEEE Signal Processing Conference, (2006)

    Google Scholar 

Download references

Acknowledgments

We profusely thank Prof. Phaneendra K. Yalavarthy for his innumerable suggestions on the algebraic and the basis pursuit methods and for his theoretical insights in these topics. We also thank the Multimedia team and Nitin for sharing the modified kernel estimation code based on Landweber’s method but with dynamic step size.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajshekhar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Das, R., Bajpai, A., Venkatesan, S.M. (2017). Fast Non-blind Image Deblurring with Sparse Priors. In: Raman, B., Kumar, S., Roy, P., Sen, D. (eds) Proceedings of International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 459. Springer, Singapore. https://doi.org/10.1007/978-981-10-2104-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2104-6_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2103-9

  • Online ISBN: 978-981-10-2104-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics