Abstract
With the rapid growth of surveillance cameras and sensors, a need of smart video analysis and monitoring system is gradually increasing for browsing and storing a large amount of data. Traditional video analysis methods generate a summary of day long videos but maintaining the motion structure and interaction between object is of great concern to researchers. This paper presents an approach to produce video synopsis while preserving motion structure and object interactions. While condensing video, object appearance over spatial domain is maintained by considering its weight that preserve important activity portion and condense data related to regular events. The approach is tested in the context of condensation ratio while maintaining the interaction between objects. Experimental results over three video sequences show high condensation rate up to 11 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rav, A., Alex, R., Pritch, Y., Peleg, S.: Making a Long Video Short: Dynamic video synopsis. In: Computer Vision and Pattern Recognition, IEEE, pp. 435–441 (2006)
Fu, W., Wang, J.,Gui, L., Lu, H., Ma, S.: Online Video Synopsis of Structured Motion. In: Neurocomputing, Vol. 135.5, pp. 155–162 (2014)
Lee, Y., Ghosh, J., Grauman, K.: Discovering Important People and Objects for Egocentric Video Summarization. In: Computer Vision and Pattern Recognition (CVPR) pp. 1346–1353 (2012)
Liyuan, L., Huang, W., Irene, Y., Tian, Q.: Statistical Modeling of Complex Backgrounds for Foreground Object Detection. In: IEEE Transaction on Image Processing, IEEE Vol. 13.11, pp. 1459–1472 (2004)
Horn, Berthold, K., Schunck, Brian, G.: Determining Optical Flow. In: Artificial Intelligence, 17, pp. 185–203 (1981)
Suganyadevi, K., Malmurugan N., Sivakumar R.: Efficient Foreground Extraction Based On Optical Flow And Smed for Road Traffic Analysis. In: International Journal Of Cyber-Security And Digital Forensics. pp. 177–182 (2012)
Stauffer, C., Eric, W., Grimson, L.: Learning Patterns of Activity Using Real-Time Tracking. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, pp. 747–757 (2012)
Karasulu, B.: Review and Evaluation of Well-Known Methods for Moving Object Detection and Tracking in Videos. In: Journal Of Aeronautics and Space Technologies, 4, pp 11–22 (2012)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-Time Foreground-Background Segmentation using Codebook Model. In: Real Time Imaging 11, Vol. 3, pp 172–185 (2005)
Badal, T., Nain, N., Ahmed, M., Sharma, V.: An Adaptive Codebook Model for Change Detection with Dynamic Background. In: 11th International Conference on Signal Image Technology & Internet-Based Systems, pp. 110–116. IEEE Computer Society, Thailand (2015)
Badal, T., Nain, N., Ahmed, M.: Video partitioning by segmenting moving object trajectories. In: Proc. SPIE 9445, Seventh International Conference on Machine Vision (ICMV 2014), vol 9445, SPIE, Milan, pp. 94451B–94451B-5 (2014).
Chen, W., Wang, K., Lan, J.: Moving Object Tracking Based on Background Subtraction Combined Temporal Difference. In: International Conference on Emerging Trends in Computer and Image Processing (ICETCIP’2011) Bangkok, pp 16–19 (2011)
Bastian, L., Leonardis, A., Schiele, B.: Robust Object Detection with Interleaved Categorization and Segmentation. In: International Journal of Computer Vision (IJCV), Vol. 77, pp. 259–289 (2008)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. In: Acm computing surveys (CSUR). ACM, Vol. 38 pp. 4–13 (2006)
Fu, Z., Han, Y.: Centroid Weighted Kalman Filter for Visual Object Tracking. In: Elsevier Journal of Measurement, pp. 650–655 (2012)
Pritch, Y., Alex, R., Peleg, S.: Nonchronological Video Synopsis and Indexing. In: IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 30, NO. 11, pp. 1971–1984 (2008)
Blunsden, S., Fisher, R.: The BEHAVE Video Dataset: Ground Truthed Video for Multi-Person Behavior Classification. In: Annals of the BMVA, Vol. 4, pp. 1–12 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Singapore
About this paper
Cite this paper
Badal, T., Nain, N., Ahmed, M. (2017). Surveillance Video Synopsis While Preserving Object Motion Structure and Interaction. In: Raman, B., Kumar, S., Roy, P., Sen, D. (eds) Proceedings of International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 460. Springer, Singapore. https://doi.org/10.1007/978-981-10-2107-7_18
Download citation
DOI: https://doi.org/10.1007/978-981-10-2107-7_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-2106-0
Online ISBN: 978-981-10-2107-7
eBook Packages: EngineeringEngineering (R0)