Abstract
Getting a good estimation of the Interaction Quality (IQ) of a spoken dialogue helps to increase the user satisfaction as the dialogue strategy may be adapted accordingly. Therefore, some research has already been conducted in order to automatically estimate the Interaction Quality. This article adds to this by describing how Recurrent Neural Networks may be used to estimate the Interaction Quality for each dialogue turn and by evaluating their performance on this task. Here, we will show that RNNs may outperform non-recurrent neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ultes, S., Heinroth, T., Schmitt, A., Minker, W.: A theoretical framework for a user-centered spoken dialog manager. In: Proceedings of the Paralinguistic Information and its Integration in Spoken Dialogue Systems Workshop. pp. 241—246. Springer (2011)
Ultes, S., Dikme, H., Minker, W.: Dialogue management for user-centered adaptive dialogue. In: Proceedings of IWSDS (2014). http://www.uni-ulm.de/fileadmin/website_uni_ulm/allgemein/2014_iwsds/iwsds2014_lp_ultes.pdf
Ultes, S., Dikme, H., Minker, W.: First insight into quality-adaptive dialogue. In: Proceedings of the LREC, pp. 246–251 (2014)
Ultes, S., Kraus, M., Schmitt, A., Minker, W.: Quality-adaptive spoken dialogue initiative selection and implications on reward modelling. In: Proceedings of SIGDIAL, pp. 374–383. ACL (2015)
Ultes, S., Minker, W.: Improving interaction quality recognition using error correction. In: Proceedings of SIGDIAL, pp. 122–126. ACL (2013). http://www.aclweb.org/anthology/W/W13/W13-4018
Ultes, S., Minker, W.: Interaction quality: a review. Bulletin of Siberian State Aerospace University named after academician M.F. Reshetnev (4), 153–156 (2013). http://www.vestnik.sibsau.ru/images/vestnik/ves450.pdf
Ultes, S., Platero Sánchez, M.J., Schmitt, A., Minker, W.: Analysis of an extended interaction quality corpus. In: Proceedings of IWSDS (2015)
Ultes, S., ElChabb, R., Minker, W.: Application and evaluation of a conditioned hidden markov model for estimating interaction quality of spoken dialogue systems. In: Proceedings of IWSDS, pp. 141–150. Springer (2012)
Ultes, S., Minker, W.: Interaction quality estimation in spoken dialogue systems using hybrid-hmms. In: Proceedings of SIGDIAL, pp. 208–217. ACL (2014). http://www.aclweb.org/anthology/W14-4328
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In: Proceedings of the INTERSPEECH, pp. 3771–3775 (2013)
Henderson, M., Thomson, B., Young, S.: Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation. In: Proceedings of the SLT, pp. 360–365. IEEE (2014)
Wen, T.H., Gačić, M., Kim, D., Mrkšic, N., Su, P.H., Vandyke, D., Young, S.: Stochastic language generation in dialogue using recurrent neural networks with convolutional sentence reranking. In: Proceedings of the ACL, pp. 275–284. (2015)
Su, P.H., Vandyke, D., Gasic, M., Kim, D., Mrksic, N., Wen, T.H., Young, S.: Learning from real users: rating dialogue success with neural networks for reinforcement learning in spoken dialogue systems. arXiv:1508.03386 (2015)
Walker, M., Litman, D.J., Kamm, C.A., Abella, A.: Paradise: a framework for evaluating spoken dialogue agents. In: Proceedings of ACL, pp. 271–280. ACL, Morristown, NJ, USA (1997)
Engelbrecht, K.P., Gödde, F., Hartard, F., Ketabdar, H., Möller, S.: Modeling user satisfaction with hidden markov model. In: Proceedings of SIGDIAL, pp. 170–177. ACL, Morristown, NJ, USA (2009)
Higashinaka, R., Minami, Y., Dohsaka, K., Meguro, T.: Issues in predicting user satisfaction transitions in dialogues: Individual differences, evaluation criteria, and prediction models. In: Spoken Dialogue Systems for Ambient Environments, Lecture Notes in Computer Science, vol. 6392, pp. 48–60. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16202-2_5
Hara, S., Kitaoka, N., Takeda, K.: Estimation method of user satisfaction using n-gram-based dialog history model for spoken dialog system. In: Proceedings of LREC. ELRA, Valletta, Malta (2010)
Schmitt, A., Ultes, S.: Interaction quality: assessing the quality of ongoing spoken dialog interaction by experts—and how it relates to user satisfaction. Speech Commun. (2015) accepted for publication
Ultes, S., Schmitt, A., Minker, W.: Towards quality-adaptive spoken dialogue management. In: Proceedings of the NAACL-HLT: SDCTD, pp. 49–52. ACL, Montréal, Canada (2012). http://www.aclweb.org/anthology/W12-1819
Ultes, S., Schmitt, A., Minker, W.: On quality ratings for spoken dialogue systems—experts vs. users. In: Proceedings of NAACL-HLT, pp. 569–578. ACL (2013)
Schmitt, A., Schatz, B., Minker, W.: Modeling and predicting quality in spoken human-computer interaction. In: Proceedings of SIGDIAL, pp. 173–184. ACL, Portland, Oregon, USA (2011)
Raux, A., Bohus, D., Langner, B., Black, A.W., Eskenazi, M.: Doing research on a deployed spoken dialogue system: one year of let’s go! experience. In: Proceedings of ICSLP (2006)
Schmitt, A., Ultes, S., Minker, W.: A parameterized and annotated spoken dialog corpus of the CMU Let’s go bus information system. In: Proceedings of the LREC, pp. 3369–337 (2012)
Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
Lin, T., Horne, B.G., Tiňo, P., Giles, C.L.: Learning long-term dependencies in narx recurrent neural networks. IEEE Trans. Neural Netw. 7(6), 1329–1338 (1996)
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: Phoneme recognition using time-delay neural networks. IEEE Trans. Acoust. Speech Signal Process. 37(3), 328–339 (1989)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)
Spearman, C.E.: The proof and measurement of association between two things. Am. J. Psychol. 15, 88–103 (1904)
Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213 (1968)
De Jesús, O., Hagan, M.T.: Backpropagation algorithms for a broad class of dynamic networks. IEEE Trans. Neural Netw. 18(1), 14–27 (2007)
De Jesús, O., Horn, J.M., Hagan, M.T.: Analysis of recurrent network training and suggestions for improvements. In: Proccedings of the International Joint Conference on Neural Networks (IJCNN’01) 2001. vol. 4, pp. 2632–2637. IEEE (2001)
Horn, J., De Jesús, O., Hagan, M.T.: Spurious valleys in the error surface of recurrent networksanalysis and avoidance. IEEE Trans. Neural Netw. 20(4), 686–700 (2009)
Acknowledgements
This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 645012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Pragst, L., Ultes, S., Minker, W. (2017). Recurrent Neural Network Interaction Quality Estimation. In: Jokinen, K., Wilcock, G. (eds) Dialogues with Social Robots. Lecture Notes in Electrical Engineering, vol 427. Springer, Singapore. https://doi.org/10.1007/978-981-10-2585-3_31
Download citation
DOI: https://doi.org/10.1007/978-981-10-2585-3_31
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-2584-6
Online ISBN: 978-981-10-2585-3
eBook Packages: EngineeringEngineering (R0)