Skip to main content

Active Learning for Example-Based Dialog Systems

  • Chapter
  • First Online:
Dialogues with Social Robots

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 427))

  • 1642 Accesses

Abstract

While example-based dialog is a popular option for the construction of dialog systems, creating example bases for a specific task or domain requires significant human effort. To reduce this human effort, in this paper, we propose an active learning framework to construct example-based dialog systems efficiently. Specifically, we propose two uncertainty sampling strategies for selecting inputs to present to human annotators who create system responses for the selected inputs. We compare performance of these proposed strategies with a random selection strategy in simulation-based evaluation on 6 different domains. Evaluation results show that the proposed strategies are good alternatives to random selection in domains where the complexity of system utterances is low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The experimental results of Nio et al. [8] indicate that the human subjective evaluation for naturalness and relevance of system response is correlated with the score calculated in Eq. (4).

  2. 2.

    Source files to replicate these experiments are available: https://github.com/TakuyaHiraoka/Active-Learning-for-Example-based-Dialog-Systems.

  3. 3.

    We use dialog logs collected from http://www.cleverbot.com/j2convbydate-page1.

  4. 4.

    http://www.phontron.com/kylm/.

  5. 5.

    In our research, we use previous dialog act and slot filling status [4] as semantic and discourse features.

References

  1. Murao, H., Kawaguchi, N., Matsubara, S., Inagaki, Y.: Example-based query generation for spontaneous speech. In: Proceedings of ASRU (2001)

    Google Scholar 

  2. Murao, H., Kawaguchi, N., Matsubara, S., Yamaguchi, Y., Inagaki, Y.: Example-based spoken dialogue system using WOZ system log. In: Proceeding of SIGDIAL (2003)

    Google Scholar 

  3. Nisimura, R., Nishihara, Y., Tsurumi, R., Lee, A., Saruwatari, H., Shikano, K.: Takemaru-kun: Speech-oriented information system for real world research platform. In: Proceedings of LUAR (2003)

    Google Scholar 

  4. Lee, C., Jung, S., Kim, S., Lee, G.G.: Example-based dialog modeling for practical multi-domain dialog system. Speech Commun. (2009)

    Google Scholar 

  5. Xue, X., Jeon, J., Croft, W.B.: Retrieval models for question and answer archives. In: Proceeding of SIGIR (2008)

    Google Scholar 

  6. Banchs, R.E., Li, H.: Iris: a chat-oriented dialogue system based on the vector space model. In: Proceedings of ACL (2012)

    Google Scholar 

  7. Nio, L., Sakti, S., Neubig, G., Toda, T., Nakamura., S.: Improving the robustness of example-based dialog retrieval using recursive neural network paraphrase identification. In: Proceedings of SLT (2014)

    Google Scholar 

  8. Nio, L., Sakti, S., Neubig, G., Toda, T., Nakamura, S.: Utilizing human-to-human conversation examples for a multi domain chat-oriented dialog system. Trans. IEICE (2014)

    Google Scholar 

  9. Settles, B.: Active learning literature survey. Computer Sciences Technical Report, vol. 1648, University of Wisconsin-Madison (2011)

    Google Scholar 

  10. Ghigi, F., Tamarit, V., Martinez-Hinarejos, C.D., Benedi, J.M.: Active learning for dialogue act labelling. Lect. Notes Comput. Sci. (2011)

    Google Scholar 

  11. Gotab, P., Bechet, F., Damnati, G.: Active learning for rule-based and corpus-based spoken language understanding models. In: Proceedings of ASRU (2009)

    Google Scholar 

  12. Hakkani-Tür, D., Riccardi, G., Tür, G.: An active approach to spoken language processing. ACM Trans. Speech Lang. Process. (2015)

    Google Scholar 

  13. Tür, G., Hakkani-Tür, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Commun. (2005)

    Google Scholar 

  14. Tür, G., Schapire, R.E., Hakkani-Tür, D.: Active learning for spoken language understanding. In: Proceedings of ICASSP (2003)

    Google Scholar 

  15. Williams, J.D., Niraula, N.B., Dasigi, P., Lakshmiratan, A., Suarez, C.G.J., Reddy, M., Zweig, G.: Rapidly scaling dialog systems with interactive learning. In: Proceedings of IWSDS (2015)

    Google Scholar 

  16. Riccardi, G., Hakkani-Tür, D.: Active learning: theory and applications to automatic speech recognition. Speech Audio Process. (2005)

    Google Scholar 

  17. Yu, D., Varadarajan, B., Deng, L., Acero, A.: Active learning and semi-supervised learning for speech recognition: a unified framework using the global entropy reduction maximization criterion. Comput. Speech Lang. (2010)

    Google Scholar 

  18. Mairesse, F., Gašić, M., Jurčíček, F., Keizer, S., Thomson, B., Yu, K., Young, S.: Phrase-based statistical language generation using graphical models and active learning. In: Proceedings of ACL (2010)

    Google Scholar 

  19. Gašić, M., Young, S.: Gaussian processes for POMDP-based dialogue manager optimisation. Audio Speech Lang. Process. (2014)

    Google Scholar 

  20. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press (2014)

    Google Scholar 

  21. Ritter, A., Cherry, C., Dolan, W.B.: Data-driven response generation in social media. In: Proceedings of EMNLP (2011)

    Google Scholar 

  22. Shin, A., Sasano, R., Takamura, H., Okumura, M.: Context-dependent automatic response generation using statistical machine translation techniques. In: Proceedings of NAACL (2015)

    Google Scholar 

  23. Sordoni, A., Galle, M., Auli, M., Brockett, C., Mitchell, Y.M., Nie, J.Y., Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of conversational responses. In: Proceedings of NAACL (2015)

    Google Scholar 

  24. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of SIGIR (1994)

    Google Scholar 

  25. Williams, J., Raux, A., Ramachandran, D., Black, A.: The dialog state tracking challenge. In: Proceedings of SIGDIAL (2013)

    Google Scholar 

  26. Henderson, M., Thomson, B., Williams, J.: The second dialog state tracking challenge. In: Proceedings of SIGDIAL (2014)

    Google Scholar 

  27. Henderson, M., Thomson, B., Williams, J.: The third dialog state tracking challenge. In: Proceedings of SLT (2014)

    Google Scholar 

  28. Higashinaka, R., Funakoshi, K., Araki, M., Tsukahara, H., Kobayashi, Y., Mizukami, M.: Towards taxonomy of errors in chat-oriented dialogue systems. In: Proceedings of SIGDIAL (2015)

    Google Scholar 

  29. Nio, L., Sakti, S., Neubig, G., Toda, T., Nakamura., S.: Conversation dialog corpora from television and movie scripts. In: Proceedings of O-COCOSDA (2014)

    Google Scholar 

Download references

Acknowledgements

Part of this research was supported by JSPS KAKENHI Grant Number 24240032, and the Commissioned Research of National Institute of Information and Communications Technology (NICT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Hiraoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hiraoka, T., Neubig, G., Yoshino, K., Toda, T., Nakamura, S. (2017). Active Learning for Example-Based Dialog Systems. In: Jokinen, K., Wilcock, G. (eds) Dialogues with Social Robots. Lecture Notes in Electrical Engineering, vol 427. Springer, Singapore. https://doi.org/10.1007/978-981-10-2585-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2585-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2584-6

  • Online ISBN: 978-981-10-2585-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics