Skip to main content

A Self-adaptive Shuffled Frog Leaping Algorithm for Multivariable PID Controller’s Optimal Tuning

  • Conference paper
  • First Online:
Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2016, SCS AutumnSim 2016)

Abstract

To insure the multi-input multi-output (MIMO) system has good system response and anti-jamming capability under no decoupling, this paper proposed a self-adaptive shuffled frog leaping algorithm to solve the multivariable PID controller’s optimal tuning problem. First, the mathematical description of optimal tuning problem of multivariable PID controller is given. Second, a modified SFL with a parameter adaptive adjustment strategy in the basis of convergence analysis is proposed to enhance SFL’s global searching ability and to improve its searching efficiency. Finally, a classical simulation example proposed by Wood and Berry is used to compare the performance of our modified SFL with SFL proposed by Thai and wPSO proposed by Shi, and the optimal results of PI/PID controller demonstrate the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, W., Zhang, J., Chai, T.: A survey of advanced PID parameter tuning methods. ACTA AUTOMATICA SINICA 26(3), 347–355 (2000)

    Google Scholar 

  2. Wang, Q.-G., Zou, B., Lee, T.-H., Bi, Q.: Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica 33(3), 319–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luyben, W.L.: A simple method for tuning SISO controllers in a multivariable system. Ind. Eng. Chem. Product Res. Dev. 25, 654–660 (1986)

    Article  Google Scholar 

  4. Chen, D., Seborg, D.E.: Design of decentralized PI control systems based on Nyquist stability analysis. J. Process Control 13(1), 27–39 (2003)

    Article  Google Scholar 

  5. Huynh, T.-H.: A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers. In: IEEE International Conference on Industrial Technology, (ICIT 2008), pp. 1–6 (2008)

    Google Scholar 

  6. Chang, W.-D.: A multi-crossover genetic approach to multivariable PID controllers tuning. Expert Syst. Appl. 33(3), 620–626 (2007)

    Article  Google Scholar 

  7. Willhuice Iruthayarajan, M., Baskar, S.: Evolutionary algorithms based design of multivariable PID controller. Expert Syst. Appl. 36(5), 9159–9167 (2009)

    Article  Google Scholar 

  8. Han, K., Zhao, J., Xu, Z.-H., Qian, J.-X.: A closed-loop particle swarm optimizer for multivariable process controller design. J. Zhejiang Univ. SCIENCE A 9(8), 1050–1060 (2009)

    Article  MATH  Google Scholar 

  9. Wang, J., Gao, X.: Design of multivariable PID controller of electroslag remelting process based on improved shuffled frog leaping algorithm. Control Decis. 26(11), 1731–1734 (2011)

    Google Scholar 

  10. Menhas, M.I., Wang, L., Fei, M., Pan, H.: Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Syst. Appl. 39(4), 4390–4401 (2012)

    Article  Google Scholar 

  11. Willjuice Iruthayarajan, M., Baskar, S.: Covariance matrix adaptation evolution strategy based design of centralized PID controller. Expert Syst. Appl. 37(8), 5775–5781 (2010)

    Article  Google Scholar 

  12. Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J.M.: Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Syst. Appl. 39(9), 7895–7907 (2012)

    Article  Google Scholar 

  13. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manage. 129(3), 210–225 (2003)

    Article  Google Scholar 

  14. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 19(1), 43–53 (2005)

    Article  Google Scholar 

  15. Xiao, Y., Li, B.-H., Chai, X., Wang, Q.: Convergence Analysis of shuffled frog leaping algorithm and its modified algorithm. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 40(7), 15–18 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Foundation item of Project supported by the National High-Tech R&D Program, China (No. 2015AA042101).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Xiao, Y., Li, B.H., Lin, T., Hou, B., Shi, G., Li, Y. (2016). A Self-adaptive Shuffled Frog Leaping Algorithm for Multivariable PID Controller’s Optimal Tuning. In: Zhang, L., Song, X., Wu, Y. (eds) Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. AsiaSim SCS AutumnSim 2016 2016. Communications in Computer and Information Science, vol 643. Springer, Singapore. https://doi.org/10.1007/978-981-10-2663-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2663-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2662-1

  • Online ISBN: 978-981-10-2663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics