Skip to main content

Face Detection Using Hierarchical Fully Convolutional Networks

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Included in the following conference series:

Abstract

Face detection in unconstrained environment is a challenge problem. Recent studies show that deep convolutional networks (DCNs) have achieved outstanding performance on this task, but most of them have multiple stages (e.g., region proposal, classification), which are complex and time-consuming in practice. In this paper, we propose a fully convolutional network (FCN) framework which can be trained straightforward in an end-to-end manner. In our network, hierarchical feature layers with different resolutions are used to detect different scale faces. For each hierarchical layer, a specific default boxes set with different aspect ratios and scales is associated with each map cell. At prediction time, the network generates confidence scores for the default boxes and produces offsets of default boxes to get better bounding boxes of faces. The predictions of each hierarchical layer are combined into final detection result. Experimental results on the AFW and FDDB datasets confirm the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)

    Article  Google Scholar 

  2. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014)

    Google Scholar 

  3. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)

    Google Scholar 

  4. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  5. Yang, S., Luo, P., Loy, C.-C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: IEEE International Conference on Computer Vision, pp. 3676–3684 (2015)

    Google Scholar 

  6. Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: IEEE International Conference on Computer Vision, pp. 82–90 (2015)

    Google Scholar 

  7. Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325–5334 (2015)

    Google Scholar 

  8. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  10. Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: IEEE International Conference on Computer Vision, pp. 633–640 (2013)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  14. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. arXiv preprint arXiv:1512.02325

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  16. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better. arXiv preprint arXiv:1506.04579

  17. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE (2012)

    Google Scholar 

  18. Jain, V., Learned-Miller, E.G.: FDDB: a benchmark for face detection in unconstrained settings. UMass Amherst Technical report

    Google Scholar 

  19. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  20. Köstinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: IEEE International Conference on Computer Vision Workshops, pp. 2144–2151. IEEE (2011)

    Google Scholar 

  21. Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 720–735. Springer, Heidelberg (2014)

    Google Scholar 

  22. Yan, J., Zhang, X., Lei, Z., Li, S.Z.: Face detection by structural models. Image Vis. Comput. 32(10), 790–799 (2014)

    Article  Google Scholar 

  23. Ranjan, R., Patel, V.M., Chellappa, R.: A deep pyramid deformable part model for face detection. In: International Conference on Biometrics Theory, Applications and Systems, pp. 1–8. IEEE (2015)

    Google Scholar 

  24. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. arXiv preprint arXiv:1603.01249

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundations of China (Grant nos. 61472386 and 61502444) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA 06040103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Jing Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Lv, JJ., Feng, YJ., Zhou, XD., Zhou, X. (2016). Face Detection Using Hierarchical Fully Convolutional Networks. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics