Abstract
Face detection in unconstrained environment is a challenge problem. Recent studies show that deep convolutional networks (DCNs) have achieved outstanding performance on this task, but most of them have multiple stages (e.g., region proposal, classification), which are complex and time-consuming in practice. In this paper, we propose a fully convolutional network (FCN) framework which can be trained straightforward in an end-to-end manner. In our network, hierarchical feature layers with different resolutions are used to detect different scale faces. For each hierarchical layer, a specific default boxes set with different aspect ratios and scales is associated with each map cell. At prediction time, the network generates confidence scores for the default boxes and produces offsets of default boxes to get better bounding boxes of faces. The predictions of each hierarchical layer are combined into final detection result. Experimental results on the AFW and FDDB datasets confirm the effectiveness of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014)
Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)
Yang, S., Luo, P., Loy, C.-C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: IEEE International Conference on Computer Vision, pp. 3676–3684 (2015)
Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: IEEE International Conference on Computer Vision, pp. 82–90 (2015)
Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325–5334 (2015)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: IEEE International Conference on Computer Vision, pp. 633–640 (2013)
Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. arXiv preprint arXiv:1512.02325
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better. arXiv preprint arXiv:1506.04579
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE (2012)
Jain, V., Learned-Miller, E.G.: FDDB: a benchmark for face detection in unconstrained settings. UMass Amherst Technical report
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
Köstinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: IEEE International Conference on Computer Vision Workshops, pp. 2144–2151. IEEE (2011)
Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 720–735. Springer, Heidelberg (2014)
Yan, J., Zhang, X., Lei, Z., Li, S.Z.: Face detection by structural models. Image Vis. Comput. 32(10), 790–799 (2014)
Ranjan, R., Patel, V.M., Chellappa, R.: A deep pyramid deformable part model for face detection. In: International Conference on Biometrics Theory, Applications and Systems, pp. 1–8. IEEE (2015)
Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. arXiv preprint arXiv:1603.01249
Acknowledgments
This work was partially supported by the National Natural Science Foundations of China (Grant nos. 61472386 and 61502444) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA 06040103).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lv, JJ., Feng, YJ., Zhou, XD., Zhou, X. (2016). Face Detection Using Hierarchical Fully Convolutional Networks. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_23
Download citation
DOI: https://doi.org/10.1007/978-981-10-3002-4_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3001-7
Online ISBN: 978-981-10-3002-4
eBook Packages: Computer ScienceComputer Science (R0)