Skip to main content

A Dual-Based Adaptive Gradient Method for TV Image Denoising

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 663))

Included in the following conference series:

  • 2283 Accesses

Abstract

The total variation model proposed by Rudin, Osher and Fatemi for image denoising is considered to be one of the best denoising models. In this paper, we propose, analyze and test a dual based method to solve the total variation model. This method minimizes a quadratic function with separable constraints, and we make projections onto a feasible set so that it is easy to compute. Under some mild conditions, global convergence of the proposed method is established. The proposed approach could be easily implemented. Preliminary results are reported to demonstrate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suppose that \(0<\tau <1/8\), then \(\frac{1}{\mu }\nabla \cdot w_k\) converges to \(\pi _{\frac{1}{\mu }\mathcal {K}}(-f)\) as \(k\rightarrow \infty \), where \(\pi _{\frac{1}{\mu }\mathcal {K}}(\cdot )\) is the orthogonal projection onto a convex set \(\frac{1}{\mu }\mathcal {K}\) with \(\mathcal {K}:=\{\nabla \cdot w: |w_{i,j} \le 1|, \forall i, j=1,2,\cdots ,n\}\).

  2. 2.

    Some experiments show that a better convergence can be obtained when \(\tau =0.248\).

  3. 3.

    http://www2.imm.dtu.dk/~pch/mxTV/index.html.

References

  1. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carter, J.L.: Dual methods for total variation-based image restoration. Ph.D. thesis, University of California at Los Angeles (Advisor: T.F. Chan) (2001)

    Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A.: Total variation minimization and a class of binary mrf models. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005). doi:10.1007/11585978_10

    Chapter  Google Scholar 

  6. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999). VPL

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahl, J., Hansen, P.C., Jensen, S.H., Jensen, T.L.: Algorithms and software for total variation image reconstruction via first-order methods. Numer. Algorithms 53, 67–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100, 21–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, Y.H., Liao, L.Z.: R-Linear Convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I., T\(\acute{e}\)mam, R.: Convex Analysis and Variational Problems: Classics in Applied Mathematics. SIAM, Philadelphia (1999)

    Google Scholar 

  11. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theor. Appl. 60, 401–419 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27, 622–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldstein, T., Osher, S.: The Split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hintermuller, M., Stadler, G.: An infeasible primal-dual algorithm for tv-based infconvolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi, Z.J., Shen, J.: New inexact line search method for unconstrained optimization. J. Optim. Theor. Appl. 127, 425–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toint, P.L.: An assessment of non-monotone line search techniques for unconstrained optimization. SIAM J. Sci. Comput. 17, 725–739 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. UCLA CAM Report 09–82 (2009)

    Google Scholar 

  22. Xiao, Y.H., Song, H.N.: An inexact alternating directions algorithm for constrained total variation regularized compressive sensing problems. J. Math. Imaging Vis. 44, 114–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, G.H.: Nonmonotone spectral gradient-type methods for large-scaleunconstrained optimization and nonlinear systems of equations. Pac. J. Optim. 7, 387–404 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Yu, G.H., Qi, L.Q., Dai, Y.H.: On nonmonotone chambolle gradient projection algorithms for total variation image restoration. J. Math. Imaging Vis. 35, 143–154 (2009)

    Article  MathSciNet  Google Scholar 

  25. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive stepsizes. Comput. Optim. Appl. 35, 69–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08–34 (2008)

    Google Scholar 

  28. Zhu, M.Q., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47, 377–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liao, Y., Hua, J., Xue, W. (2016). A Dual-Based Adaptive Gradient Method for TV Image Denoising. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3005-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3004-8

  • Online ISBN: 978-981-10-3005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics