Skip to main content

A Character-Based Method for License Plate Detection in Complex Scenes

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 663))

Included in the following conference series:

Abstract

License plate detection is a crucial part in license plate recognition systems and is often considered as a solved problem. However, there are still plenty of complex scenes where the current methods are invalidated. In order to increase the performance in these scenes, we propose a novel character-based method to detect multiple license plates in complex images. Firstly, a preprocessing step is performed. Then we use a modified maximally stable extremal region (MSER) based detector called MSER-+ to detect the possible character regions. Some of the regions are removed according to their geographical information. Hierarchical morphology helps to connect candidate MSERs of various sizes. The regions satisfying some geographical limits will be fed into a convolutional neural network (CNN) model for further verification. Extensive experimental results validate that our method works well in a large variety of complex scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deepglint. http://www.deepglint.com/weimu/. Accessed 29 May 2016

  2. Vision-zenith. http://www.vzeye.com/. Accessed 29 May 2016

  3. Anagnostopoulos, C., Anagnostopoulos, I., Psoroulas, I., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: a survey. IEEE Trans. Intell. Transp. Syst. 9(3), 377–391 (2008)

    Article  Google Scholar 

  4. Bai, H., Liu, C.: A hybrid license plate extraction method based on edge statistics and morphology. In: ICPR, pp. 831–834 (2004)

    Google Scholar 

  5. Bai, S., Yuan, Y., Zhao, Y.: A license plate detection method based on morphology and maximally stable extremal region. In: Proceedings of the 4th International Conference on Computer and Electrical Engineering (2011)

    Google Scholar 

  6. Chen, Z., Liu, C., Chang, F., Wang, G.: Automatic license-plate location and recognition based on feature salience. IEEE Trans. Veh. Technol. 58(7), 3781–3785 (2009)

    Article  Google Scholar 

  7. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: CVPR, pp. 553–560 (2006)

    Google Scholar 

  8. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. TCSVT 23(2), 311–325 (2013)

    Google Scholar 

  9. Dun, J., Zhang, S., Ye, X., Zhang, Y.: Chinese license plate localization in multi-lane with complex background based on concomitant colors. IEEE Intell. Transp. Syst. Mag. 7(3), 51–61 (2015)

    Article  Google Scholar 

  10. Gou, C., Wang, K., Yao, Y., Li, Z.: Vehicle license plate recognition based on extremal regions and restricted boltzmann machines. IEEE Trans. Intell. Transp. Syst. 17(4), 1096–1107 (2016)

    Article  Google Scholar 

  11. Gu, Q., Yang, J., Kong, L., Cui, G.: Multi-scaled license plate detection based on the label-moveable maximal mser clique. Opt. Rev. 22(4), 669–678 (2015)

    Article  Google Scholar 

  12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM MM, pp. 675–678 (2014)

    Google Scholar 

  13. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: CVPRW, pp. 554–561 (2013)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–44 (2015)

    Article  Google Scholar 

  15. Li, B., Tian, B., Li, Y., Wen, D.: Component-based license plate detection using conditional random field model. IEEE Trans. Intell. Transp. Syst. 14(4), 1690–1699 (2013)

    Article  Google Scholar 

  16. Li, Q.: A geometric framework for rectangular shape detection. TIP 23(9), 4139–4149 (2014)

    MathSciNet  Google Scholar 

  17. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  18. Matas, J., Zimmermann, K.: Unconstrained licence plate and text localization and recognition. In: Proceedings of the 8th IEEE Conference on Intelligent Transportation Systems, pp. 225–230 (2005)

    Google Scholar 

  19. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: CVPR, pp. 3538–3545 (2012)

    Google Scholar 

  20. Neumann, L., Matas, J.: Efficient scene text localization and recognition with local character refinement. In: ICDAR, pp. 746–750 (2015)

    Google Scholar 

  21. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_14

    Chapter  Google Scholar 

  22. Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. TPAMI 37(7), 1480–1500 (2015)

    Article  Google Scholar 

  23. Yin, X., Yin, X., Huang, K., Hao, H.: Robust text detection in natural scene images. TPAMI 36(5), 970–983 (2014)

    Article  Google Scholar 

  24. Yu, S., Li, B., Zhang, Q., Liu, C., Meng, M.Q.H.: A novel license plate location method based on wavelet transform and emd analysis. Pattern Recogn. 48(1), 114–125 (2015)

    Article  Google Scholar 

  25. Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recogn. Lett. 26(15), 2431–2438 (2005)

    Article  Google Scholar 

  26. Zhou, W., Li, H., Lu, Y., Tian, Q.: Principal visual word discovery for automatic license plate detection. TIP 21(9), 4269–79 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 61472393). The authors would like to thank Zeruo Liu for providing us with plenty of photos taken in complex scenes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, D., Wang, Z. (2016). A Character-Based Method for License Plate Detection in Complex Scenes. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3005-5_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3004-8

  • Online ISBN: 978-981-10-3005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics