Skip to main content

Hybridized Gravitational Search Algorithms with Real Coded Genetic Algorithms for Integer and Mixed Integer Optimization Problems

  • Conference paper
  • First Online:
Proceedings of Sixth International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 546))

Abstract

In this paper, the Gravitational Search Algorithm (GSA) is hybridized with real coded Genetic Algorithm to solve Integer and Mixed Integer programming problems. The idea is based on two earlier papers of the authors. In the first paper, the authors proposed a methodology in which the Laplace Crossover and Power Mutation were embedded in Gravitational Search Algorithm and in the second paper, these algorithms were extended for the case of constrained optimization problems. In order to deal with integer variables, a special method is adopted. For dealing with the constraints the Deb’s technique is implemented. The original GSA and three new variants are tested on a set of benchmark problems available in literature. Based on the extensive numerical and graphical analysis of results it is concluded that one of the proposed variants outperform the original GSA and the other proposed variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deep, K., Singh, K. P., Kansal, M.L., Mohan, C.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

    Google Scholar 

  2. Floudas, C.A., Lin, X.: Mixed integer linear programming in process scheduling: Modelling, algorithms, and applications. Ann. Oper. Res. 139(1), 131–162 (2005)

    Google Scholar 

  3. Grossmann, I.E.: Mixed-integer programming approach for the synthesis of integrated process flowsheets. Comput. Chem. Eng. 9(5), 463–482 (1985)

    Google Scholar 

  4. Mohan, C., Nguyen, H.T.: A controlled random search technique incorporating the simulated annealing concept for solving integer and mixed integer global optimization problems. Comput. Optim. Appl. 14(1), 103–132 (1999)

    Google Scholar 

  5. Babu, B.V., Angira, R.: A differential evolution approach for global optimization of MINLP problems. In: Proceedings of 4th Asia-Pacific Conference on Simulated Evolution and Learning, vol. 2, pp. 880–884 (2002)

    Google Scholar 

  6. Yan, L., Shen, K., Hu, S.: Solving mixed integer nonlinear programming problems with line-up competition algorithm. Comput. Chem. Eng. 28(12), 2647–2657 (2004)

    Google Scholar 

  7. Yiqing, L., Xigang Y., Yongjian, L.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)

    Google Scholar 

  8. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007)

    Google Scholar 

  9. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)

    Google Scholar 

  10. Costa, L., Oliveira, P.: Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Comput. Chem. Eng. 25(2), 257–266 (2001)

    Google Scholar 

  11. Li, H., Zhang, L.: A discrete hybrid differential evolution algorithm for solving integer programming problems. Eng. Optim. 46(9), 1238–1268 (2014)

    Google Scholar 

  12. Zhu, W., Fan, H.: A discrete dynamic convexized method for nonlinear integer programming. J. Comput. Appl. Math. 223(1), 356–373 (2009)

    Google Scholar 

  13. Zhu, W., Ali, M. M.: Discrete dynamic convexized method for nonlinearly constrained nonlinear integer programming. Comput. Oper. Res. 36(10), 2723–2728 (2009)

    Google Scholar 

  14. Misra, K.B., Sharma, U.: An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Trans. Reliab. 40(1), 81–91 (1991)

    Google Scholar 

  15. Tan, Y., Tan, G., Tan, Q., Yang B., Ye, Y.: Hybrid genetic algorithm with chaotic local search for mixed integer programming problems. J. Comput. Inf. Syst. 8(24), 10223–10230 (2012)

    Google Scholar 

  16. Zhou, K., Chen, X., Shao, Z., Wan, W., Biegler, L.T.: Heterogeneous parallel method for mixed integer nonlinear programming. Comput. Chem. Eng. 66, 290–300 (2014)

    Google Scholar 

  17. Tan, Y., Tan, G. Z., Deng, S.G.: Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ. 21, 2731–2742 (2014)

    Google Scholar 

  18. Newby, E., Ali, M.M.: A trust-region-based derivative free algorithm for mixed integer programming. Comput. Optim. Appl. 60(1), 199–229 (2015)

    Google Scholar 

  19. Fahim, A., Hedar, A.R.: Hybrid scatter search for integer programming problems. In: 9th International Conference on Informatics and Systems (INFOS2014), Operations Research and Decision Support Track, pp. 61–69. IEEE (2014)

    Google Scholar 

  20. Jun, W., Yuelin, G., Lina, Y.: An improved differential evolution algorithm for mixed integer programming problems. In: 9th International Conference on Computational Intelligence and Security (CIS2013), pp. 31–35. IEEE (2013)

    Google Scholar 

  21. Gao, Y., Ren, Z., Gao, Y.: Modified differential evolution algorithm of constrained nonlinear mixed integer programming problems. Inf. Technol. J. 10(11), 2068–2075 (2011)

    Google Scholar 

  22. Lin, Y.C., Hwang, K.S., Wang, F.S.: A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput. Math. Appl. 47(8), 1295–1307 (2004)

    Google Scholar 

  23. Yokota, T., Gen, M., Li, Y.X.: Genetic algorithm for nonlinear mixed integer programming problems and its applications. Comput. Ind. Eng. 30(4), 905–917 (1996)

    Google Scholar 

  24. Schlueter, M., Munetomo, M.: Parallelization strategies for evolutionary algorithms for MINLP. In: 2013 IEEE Congress on Evolutionary Computation (CEC2013), pp. 635–641. IEEE (2013)

    Google Scholar 

  25. Omran, M.G., Engelbrecht, A.P.: Differential evolution for integer programming problems. In: 2007 Congress on Evolutionary Computation, (CEC 2007), pp. 2237–2242. IEEE (2007)

    Google Scholar 

  26. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Google Scholar 

  27. Singh, A., Deep, K.: Real coded genetic algorithm operators embedded in gravitational search algorithm for continuous optimization. Intl. J. Intell. Syst. Appl. 7(12), 1–22 (2015)

    Google Scholar 

  28. Singh, A., Deep, K., Deep, A.: Curve fitting using gravitational search algorithm and its hybridized variants. In: Proceedings of Fifth International Conference on Soft Computing for Problem Solving, pp. 823–837. Springer, Singapore (2016)

    Google Scholar 

  29. Singh, A., Deep, K.: Novel hybridized variants of gravitational search algorithm for constraint optimization. Intl. J. Swarm Intell. (in press)

    Google Scholar 

  30. Singh, A., Deep, K., Nagar, A.: A new improved gravitational search algorithm for function optimization using a novel “best-so-far” update mechanism. In: Second International Conference on Soft Computing and Machine Intelligence (ISCMI), pp. 35–39. IEEE (2015)

    Google Scholar 

  31. Jiang, S., Wang, Y., Ji, Z.: Convergence analysis and performance of an improved gravitational search algorithm. Appl. Soft Comput. 24, 363–384 (2014)

    Google Scholar 

  32. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

    Google Scholar 

  33. Conley, W.: Computer Optimization Techniques. Petrocelli Books, Princeton (1980)

    Google Scholar 

Download references

Acknowledgment

The first author would like to thank Council for Scientific and Industrial Research (CSIR), New Delhi, India, for providing him the financial support vide grant number 09/143(0824)/2012-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Singh .

Editor information

Editors and Affiliations

Appendix A: Benchmark Functions

Appendix A: Benchmark Functions

Problem 1:

$$ {\text{Min}}\;f(x,y) = 2x + y $$
$$ \begin{aligned} {\text{Subject to}}:\, & 1.25 - x^{2} - y \le 0 \\ & x + y \le 1.6 \\ & 0 \le x \le 1.6 \\ & y \in \left\{ {0,1} \right\} \\ \end{aligned} $$

The global optima is \( (x,y;f) = (0.5,1;2) \).

Problem 2:

$$ {\text{Min}}\;f(x,y) = - y + 2x - \ln (x/2) $$
$$ \begin{aligned} {\text{Subject to}}:\, & - x - \ln ({x \mathord{\left/ {\vphantom {x 2}} \right. \kern-0pt} 2}) + y \le 0, \\ & 0.5 \le x \le 1.5, \\ & y \in \left\{ {0,1} \right\}. \\ \end{aligned} $$

The global optima is \( (x,y;f) = (1.375,1;2.124) \).

Problem 3:

$$ {\text{Min}}\;f(x,y) = - 0.7y + 5(x_{1} - 0.5)^{2} + 0.8 $$
$$ \begin{aligned} {\text{Subject to}}:\, & - \exp (x_{1} - 0.2) - x_{2} \le 0, \\ & x_{2} + 1.1y \le - 1.0, \\ & x_{1} - 1.2y \le 0.2, \\ & 0.2 \le x_{1} \le 1.0, \\ & - 2.22554 \le x_{2} \le - 1.0, \\ & y \in \left\{ {0,1} \right\}. \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{2} ,y;f) = (0.94194, - 2.1,1;1.07654) \).

Problem 4:

$$ {\text{Min}}\;f(x) = (x_{1} - 10)^{3} + (x_{2} - 20)^{3} $$
$$ \begin{aligned} {\text{Subject to}}:\, & (x_{1} - 5)^{2} + (x_{2} - 5)^{2} - 100 \ge 0.0, \\ & - (x_{1} - 6)^{2} - (x_{2} - 5)^{2} + 82.81 \ge 0.0, \\ & 13 \le x_{1} \le 100, \\ & 0 \le x_{2} \le 100. \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{2} ;f) = (14.095,0.84296; - 6961.81381) \).

Problem 5:

$$ {\text{Min}}\;f(x) = x_{1}^{2} + x_{1} x_{2} + 2x_{2}^{2} - 6x_{1} - 2x_{2} - 12x_{3} , $$
$$ \begin{aligned} {\text{Subject to}}:\, & 2x_{1}^{2} + x_{2}^{2} \le 15.0, \\ & - x_{1} + 2x_{2} + x_{3} \le 3.0, \\ & 0 \le x_{i} \le 10,\,{\text{integer}}\,\,i = 1, \ldots ,3. \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{2} ,x_{3} ;f) = (2,0,5; - 68) \).

Problem 6:

$$ {\text{Min}}\;f(x) = (x_{1} + 2x_{2} + 3x_{3} - x_{4} )(2x_{1} + 5x_{2} + 3x_{3} - 6x_{4} ), $$
$$ \begin{aligned} {\text{Subject to}}:\, & x_{1} + 2x_{2} + x_{3} + 3x_{4} \ge 4.0, \\ & x \in \left\{ {0,1} \right\}^{4} \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{2} ,x_{3} ,x_{4} ;f) = (0,0,1,1; - 6) \).

Problem 7:

$$ \begin{aligned} {\text{Min}}\;f(y_{1} ,v_{1} ,v_{2} ) & = 7.5y_{1} + 5.5(1 - y_{1} ) + 7v_{1} + 6v_{2} \\ & \quad + 50\frac{{y_{1} }}{{0.9\left[ {1 - \exp ( - 0.5v_{1} )} \right]}} \\ & \quad + 50\frac{{1 - y_{1} }}{{0.8\left[ {1 - \exp ( - 0.4v_{2} )} \right]}} \\ \end{aligned} $$
$$ \begin{aligned} {\text{Subject to}}:\, & 0.9\left[ {1 - \exp ( - 0.5v_{1} )} \right] - 2y_{1} \le 0, \\ & 0.8\left[ {1 - \exp ( - 0.4v_{2} )} \right] - 2(1 - y_{1} ) \le 0, \\ & v_{1} \le 10y_{1} , \\ & v_{2} \le 10(1 - y_{1} ), \\ & v_{1} ,v_{2} \ge 0, \\ & y_{1} \in \left\{ {0,1} \right\}. \\ \end{aligned} $$

The objective is to select one between two candidate reactors in order to minimize the production cost. The global optima is \( (y_{1} ,v_{1} ,v_{2} ;f) = (1,3.514237,0;99.239635) \)

Problem 8:

$$ \begin{aligned} {\text{Min}}\;f(x,y) & = (y_{1} - 1)^{2} + (y_{2} - 1)^{2} + (y_{3} - 1)^{2} - \ln (y_{4} + 1) \\ & \quad + (x_{1} - 1)^{2} + (x_{2} - 2)^{2} + (x_{3} - 3)^{2} \\ \end{aligned} $$

Subject to:

$$ \begin{aligned} & y_{1} + y_{2} + y_{3} + x_{1} + x_{2} + x_{3} \le 5.0, \\ & y_{3}^{2} + x_{1}^{2} + x_{2}^{2} + x_{3}^{2} \le 5.5, \\ & y_{1} + x_{1} \le 1.2, \\ & y_{2} + x_{2} \le 1.8, \\ & y_{3} + x_{3} \le 2.5, \\ & y_{4} + x_{1} \le 1.2, \\ & y_{2}^{2} + x_{2}^{2} \le 1.64, \\ & y_{3}^{2} + x_{3}^{2} \le 4.25, \\ & y_{2}^{2} + x_{3}^{2} \le 4.64, \\ & x_{1} ,x_{2} ,x_{3} \ge 0, \\ & y_{1} ,y_{2} ,y_{3} ,y_{4} \in \left\{ {0,1} \right\}. \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{2} ,x_{3} ,y_{1} ,y_{2} ,y_{3} ,y_{4} ;f) = (0.2,1.280624,1.954483,1,0,0,1;3.557463) \).Our algorithm achieves solution \( (x_{1} ,x_{2} ,x_{3} ,y_{1} ,y_{2} ,y_{3} ,y_{4} ;f) = (0.084607,0.798719,2.116424,1,1,0,1;3.3685783) \).

Problem 9:

$$ {\text{Min}}\;f(x) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} , $$
$$ \begin{aligned} {\text{Subject to}}:\, & x_{1} + 2x_{2} + x_{4} \ge 4.0, \\ & x_{2} + 2x_{3} \ge 3.0, \\ & x_{1} + 2x_{5} \ge 5.0, \\ & x_{1} + 2x_{2} + 2x_{3} \le 6.0, \\ & 2x_{1} + x_{3} \le 4.0, \\ & x_{1} + 4x_{5} \le 13.0, \\ & 0 \le x_{i} \le 3,\,\,i = 1,2, \ldots ,5;\,{\text{integer}} .\\ \end{aligned} $$

The global optimal solution is \( (x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ;f) = (1,1,1,1,2;8) \).

Problem 10:

$$ {\text{Min}}\;f(x) = x_{1} x_{7} + 3x_{2} x_{6} + x_{3} x_{5} + 7x_{4} , $$

Subject to:

$$ \begin{aligned} & x_{1} + x_{2} + x_{3} \ge 6.0, \\ & x_{4} + x_{5} + 6x_{6} \ge 8.0, \\ & x_{1} x_{6} + x_{2} + 3x_{5} \ge 7.0, \\ & 4x_{2} x_{7} + 3x_{4} x_{5} \ge 25.0, \\ & 3x_{1} + 2x_{3} + x_{5} \ge 7.0, \\ & 3x_{1} x_{3} + 6x_{4} + 4x_{5} \le 20.0, \\ & 4x_{1} + 2x_{3} + x_{6} x_{7} \le 15.0, \\ & 0 \le x_{1} ,x_{2} ,x_{3} \le 4, \\ & 0 \le x_{4} ,x_{5} ,x_{6} \le 2,\, \\ & 0 \le x_{7} \le 6,\, \\ & x_{i} ;i = 1,2, \ldots ,7;\,{\text{integers}} .\\ \end{aligned} $$

The global optimal solution is \( (x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} ;f) = (0,2,4,0,2,1,4;14) \).

Problem 11:

$$ {\text{Min}}\;f(x) = \exp ( - x_{1} ) + x_{1}^{2} - x_{1} x_{2} - 3x_{2}^{2} - 6x_{2} + 4x_{1} , $$
$$ \begin{aligned} {\text{Subject to}}:\, & 2x_{1} + x_{2} \le 8.0, \\ & - x_{1} + x_{2} \le 2.0, \\ & 0 \le x_{1} ,x_{2} \le 3, \\ & x_{1} ,x_{2} \,{\text{integers}} .\\ \end{aligned} $$

The global optimal solution is \( (x_{1} ,x_{2} ;f) = (1,3; - 42.632) \).

Problem 12:

$$ \begin{aligned} {\text{Min}}\;f(x) & = \sum\limits_{i = 1}^{9} {\left[ {\exp \left( { - \frac{{\left( {u_{i} - x_{2} } \right)^{{x_{3} }} }}{{x_{1} }}} \right) - 0.01i} \right]}^{2} , \\ where,u_{i} & = 25 + \left( { - 50\ln (0.01i)} \right)^{2/3} , \\ \end{aligned} $$
$$ \begin{aligned} {\text{Subject to}}:\, & 0.1 \le x_{1} \le 100.0, \\ & 0.0 \le x_{2} \le 25.6, \\ & 0.0 \le x_{3} \le 5.0, \\ & x_{1} ,x_{2} \,{\text{integers}} .\\ \end{aligned} $$

The global optimal solution is \( (x_{1} ,x_{2} ,x_{3} ;f) = (50,25,1.5;0.0) \).

Problem 13:

$$ \begin{aligned} {\text{Min}}\;f(x) & = x_{1}^{2} + x_{2}^{2} + 3x_{3}^{2} + 4x_{4}^{2} + 2x_{5}^{2} - 8x_{1} - 2x_{2} \\ & - 3x_{3} - x_{4} - 2x_{5} , \\ \end{aligned} $$
$$ \begin{aligned} {\text{Subject to}}:\, & x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \le 400, \\ & x_{1} + 2x_{2} + 2x_{3} + x_{4} + 6x_{5} \le 800, \\ & 2x_{1} + x_{2} + 6x_{3} \le 200, \\ & x_{3} + x_{4} + 5x_{5} \le 200, \\ & x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \ge 55, \\ & x_{1} + x_{2} + x_{3} + x_{4} \ge 48, \\ & x_{2} + x_{4} + x_{5} \ge 34, \\ & 6x_{1} + 7x_{5} \ge 104, \\ & 0 \le x_{i} \le 99;\,{\text{integers }}\,i = 1,2, \ldots ,5. \\ \end{aligned} $$

the global optimal solution is \( (x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ;f) = (16,22,5,5,7;807) \).

Problem 14:

$$ \begin{aligned} {\text{Max}}\;f(x,y) & = - 5.357854x_{1}^{2} - 0.835689y_{1} x_{3} \\ & - 37.29329y_{1} + 40792.141, \\ \end{aligned} $$
$$ \begin{aligned} {\text{Subject to}}:\, & a_{1} + a_{2} y_{2} x_{3} + a_{3} y_{1} x_{2} - a_{4} x_{1} x_{3} \le 92.0, \\ & a_{5} + a_{6} y_{2} x_{3} + a_{7} y_{1} y_{2} + a_{5} x_{1}^{2} \le 110.0, \\ & a_{9} + a_{10} x_{1} x_{3} + a_{11} y_{1} x_{1} + a_{12} x_{1} x_{2} \le 25.0, \\ & 27 \le x_{1} ,x_{2} ,x_{3} \le 45, \\ & y_{1} \in \left\{ {78,79, \ldots ,102} \right\}, \\ & y_{2} \in \left\{ {33,34, \ldots ,45} \right\}. \\ \end{aligned} $$

The global optima is \( (x_{1} ,x_{3} ,y_{1} ,;f) = (27,27,78;32217.4) \) and it is obtained with various different feasible combination of \( (x_{2} ,y_{2} ) \).

Problem 15:

$$ \begin{aligned} & {\text{Max}}\;f(y) = r_{1} r_{2} r_{3} , \\ & r_{1} = 1 - 0.1^{{y_{1} }} 0.2^{{y_{2} }} 0.15^{{y_{3} }} , \\ & r_{2} = 1 - 0.05^{{y_{4} }} 0.2^{{y_{5} }} 0.15^{{y_{6} }} , \\ & r_{3} = 1 - 0.02^{{y_{7} }} 0.06^{{y_{8} }} , \\ \end{aligned} $$

Subject to:

$$ \begin{aligned} & y_{1} + y_{2} + y_{3} \ge 1, \\ & y_{4} + y_{5} + y_{6} \ge 1, \\ & y_{7} + y_{8} \ge 1, \\ & 3y_{1} + y_{2} + 2y_{3} + 3y_{4} + 2y_{5} + y_{6} + 3y_{7} + 2y_{8} \le 10, \\ & y \in \left\{ {0,1} \right\}^{8} . \\ \end{aligned} $$

The global optimal solution is \( (y;f) = (0,1,1,1,0,1,1,0;0.94347) \).

Problem 16:

$$ \begin{aligned} {\text{Max}}\;f(x) & = 215x_{1} + 116x_{2} + 670x_{3} + 924x_{4} + 510x_{5} \\ & \quad + 600x_{6} + 424x_{7} + 942x_{8} + 43x_{9} + 369x_{10} \\ & \quad + 408x_{11} + 52x_{12} + 319x_{13} + 214x_{14} + 851x_{15} \\ & \quad + 394x_{16} + 88x_{17} + 124x_{18} + 17x_{19} + 779x_{20} \\ & \quad + 278x_{21} + 258x_{22} + 271x_{23} + 281x_{24} + 326x_{25} \\ & \quad + 819x_{26} + 485x_{27} + 454x_{28} + 297x_{29} + 53x_{30} \\ & \quad + 136x_{31} + 796x_{32} + 114x_{33} + 43x_{34} + 80x_{35} \\ & \quad + 268x_{36} + 179x_{37} + 78x_{38} + 105x_{39} + 281x_{40} \\ \end{aligned} $$

Subject to:

$$ \begin{aligned} & 8x_{1} + 11x_{2} + 6x_{3} + x_{4} + 7x_{5} + 9x_{6} + 10x_{7} + 3x_{8} + 11x_{9} \\ & + 11x_{10} + 2x_{11} + x_{12} + 16x_{13} + 18x_{14} + 2x_{15} + x_{16} + x_{17} \\ & + 2x_{18} + 3x_{19} + 4x_{20} + 7x_{21} + 6x_{22} + 2x_{23} + 2x_{24} + x_{25} \\ & + 2x_{26} + x_{27} + 8x_{28} + 10x_{29} + 2x_{30} + x_{31} + 9x_{32} + x_{33} \\ & + 9x_{34} + 2x_{35} + 4x_{36} + 10x_{37} + 8x_{38} + 6x_{39} \\ & + x_{40} \le 25,000, \\ & 5x_{1} + 3x_{2} + 2x_{3} + 7x_{4} + 7x_{5} + 3x_{6} + 6x_{7} + 2x_{8} + 15x_{9} \\ & + 8x_{10} + 16x_{11} + x_{12} + 2x_{13} + 2x_{14} + 7x_{15} + 7x_{16} + 2x_{17} \\ & + 2x_{18} + 4x_{19} + 3x_{20} + 2x_{21} + 13x_{22} + 8x_{23} + 2x_{24} + 3x_{25} \\ & + 4x_{26} + 3x_{27} + 2x_{28} + x_{29} + 10x_{30} + 6x_{31} + 3x_{32} + 4x_{33} \\ & + x_{34} + 8x_{35} + 6x_{36} + 3x_{37} + 4x_{38} + 6x_{39} + 2x_{40} \le 25,000 \\ & 3x_{1} + 4x_{2} + 6x_{3} + 2x_{4} + 2x_{5} + 3x_{6} + 7x_{7} + 10x_{8} + 3x_{9} \\ & + 7x_{10} + 2x_{11} + 16x_{12} + 3x_{13} + 3x_{14} + 9x_{15} + 8x_{16} + 9x_{17} \\ & + 7x_{18} + 6x_{19} + 16x_{20} + 12x_{21} + x_{22} + 3x_{23} + 14x_{24} + 7x_{25} \\ & + 13x_{26} + 6x_{27} + 16x_{28} + 3x_{29} + 2x_{30} + x_{31} + 2x_{32} + 8x_{33} \\ & + 2x_{34} + 2x_{35} + 7x_{36} + x_{37} + 2x_{38} + 6x_{39} + 5x_{40} \le 25,000 \\ & 10 \le x_{i} \le 99;\,\,i = 1,2, \ldots ,20, \\ & 20 \le x_{i} \le 99;\,\,i = 21,22, \ldots ,40. \\ \end{aligned} $$

Initially, this problem is solved by Monte Carlo technique on a random sample of 2000 points [33] and best solution is obtained at

$$ \left( {\begin{array}{*{20}l} {48} \hfill & {73} \hfill & {16} \hfill & {86} \hfill & {49} \hfill & {99} \hfill & {94} \hfill & {79} \hfill & {98} \hfill & {86} \hfill \\ {94} \hfill & {33} \hfill & {95} \hfill & {80} \hfill & {53} \hfill & {86} \hfill & {87} \hfill & {50} \hfill & {39} \hfill & {78} \hfill \\ {47} \hfill & {72} \hfill & {97} \hfill & {98} \hfill & {73} \hfill & {86} \hfill & {99} \hfill & {81} \hfill & {77} \hfill & {95} \hfill \\ {28} \hfill & {95} \hfill & {58} \hfill & {23} \hfill & {55} \hfill & {70} \hfill & {35} \hfill & {82} \hfill & {32} \hfill & {94} \hfill \\ \end{array} } \right) $$

with \( f_{\hbox{max} } = 1030361 \). But proposed algorithm found the optimal solution at

$$ \left( {\begin{array}{*{20}l} {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ \end{array} } \right) $$

with \( f_{\hbox{max} } = 1352439. \)

Problem 17:

$$ \begin{aligned} {\text{Max}}\;f(x) & = 50x_{1} + 150x_{2} + 100x_{3} + 92x_{4} + 55x_{5} + 12x_{6} \\ & \quad + 11x_{7} + 10x_{8} + 8x_{9} + 3x_{10} + 114x_{11} + 90x_{12} \\ & \quad + 87x_{13} + 91x_{14} + 58x_{15} + 16x_{16} + 19x_{17} + 22x_{18} \\ & \quad + 21x_{19} + 32x_{20} + 53x_{21} + 56x_{22} + 118x_{23} + 192x_{24} \\ & \quad + 52x_{25} + 204x_{26} + 250x_{27} + 295x_{28} + 82x_{29} \\ & \quad + 30x_{30} + 29x_{31}^{2} - 2x_{32}^{2} + 9x_{33}^{2} + 94x_{34} + 15x_{35}^{3} \\ & \quad + 17x_{36}^{2} - 15x_{37} - 2x_{38} + x_{39}^{2} + 3x_{40}^{4} + 52x_{41} + 57x_{42}^{2} \\ & \quad - x_{43}^{2} + 12x_{44} + 21x_{45} + 6x_{46} + 7x_{47} - x_{48} + x_{49} + x_{50} \\ & \quad + 119x_{51} + 82x_{52} + 75x_{53} + 18x_{54} + 16x_{55} + 12x_{56} \\ & \quad + 6x_{57} + 7x_{58} + 3x_{59} + 6x_{60} + 12x_{61} + 13x_{62} + 18x_{63} \\ & \quad + 7x_{64} + 3x_{65} + 19x_{66} + 22x_{67} + 3x_{68} + 12x_{69} + 9x_{70} \\ & \quad + 18x_{71} + 19x_{72} + 12x_{73} + 8x_{74} + 5x_{75} + 2x_{76} + 16x_{77} \\ & \quad + 17x_{78} + 11x_{79} + 12x_{80} + 9x_{81} + 12x_{82} + 11x_{83} \\ & \quad + 14x_{84} + 16x_{85} + 3x_{86} + 9x_{87} + 10x_{88} + 3x_{89} + x_{90} \\ & \quad + 12x_{91} + 3x_{92} + 12x_{93} - 2x_{94}^{2} - x_{95} + 6x_{96} + 7x_{97} \\ & \quad + 4x_{98} + x_{99} + 2x_{100} \\ \end{aligned} $$
$$ \begin{aligned} {\text{Subject to}}:\, & \sum\limits_{i = 1}^{100} {x_{i} \le 7500,} \\ & \sum\limits_{i = 1}^{50} {10x_{i} + \sum\limits_{i = 51}^{100} {x_{i} } \le 42,000,} \\ & 0 \le x_{i} \le 99;\,i = 1,2, \ldots ,100. \\ \end{aligned} $$

This is a nonlinear optimization problem with one hundred decision variables. Initially, it is solved by Monte Carlo technique on a random sample of 10000 points [33] and the global optimal solution of this problem is achieved at

$$ \left( {\begin{array}{*{20}l} {51} \hfill & {10} \hfill & {90} \hfill & {85} \hfill & {35} \hfill & {36} \hfill & {75} \hfill & {98} \hfill & {99} \hfill & {30} \hfill \\ {56} \hfill & {23} \hfill & {10} \hfill & {56} \hfill & {98} \hfill & {94} \hfill & {63} \hfill & 8 \hfill & {27} \hfill & {92} \hfill \\ {10} \hfill & {66} \hfill & {69} \hfill & {10} \hfill & {39} \hfill & {38} \hfill & {49} \hfill & 8 \hfill & {95} \hfill & {96} \hfill \\ {86} \hfill & {14} \hfill & 1 \hfill & {55} \hfill & {98} \hfill & {64} \hfill & 8 \hfill & 1 \hfill & {18} \hfill & {99} \hfill \\ {84} \hfill & {78} \hfill & 4 \hfill & {19} \hfill & {85} \hfill & {33} \hfill & {59} \hfill & {95} \hfill & {57} \hfill & {48} \hfill \\ {37} \hfill & {95} \hfill & {62} \hfill & {82} \hfill & {62} \hfill & {62} \hfill & {87} \hfill & {38} \hfill & {95} \hfill & {14} \hfill \\ {91} \hfill & {21} \hfill & {72} \hfill & {85} \hfill & {68} \hfill & {69} \hfill & {30} \hfill & {30} \hfill & {85} \hfill & {93} \hfill \\ {73} \hfill & {19} \hfill & {26} \hfill & {62} \hfill & {94} \hfill & {59} \hfill & {53} \hfill & {11} \hfill & 0 \hfill & 1 \hfill \\ 2 \hfill & {26} \hfill & {43} \hfill & {50} \hfill & {42} \hfill & {93} \hfill & {27} \hfill & {71} \hfill & {61} \hfill & {93} \hfill \\ {44} \hfill & {94} \hfill & {15} \hfill & {92} \hfill & 8 \hfill & {18} \hfill & {42} \hfill & {27} \hfill & {66} \hfill & {49} \hfill \\ \end{array} } \right) $$

with \( f_{\hbox{max} } = 303062435. \)

The global optima of problem 17 is improved by MI-LXPMGSA and it is found at

$$ \left( {\begin{array}{*{20}l} {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {71} \hfill & {99} \hfill & 0 \hfill & 0 \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & 0 \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & 0 \hfill & 0 \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & 0 \hfill & {99} \hfill & {99} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & 4 \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & 0 \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & 0 \hfill & 0 \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill \\ {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & {99} \hfill & 0 \hfill & {99} \hfill & {99} \hfill & 0 \hfill & 0 \hfill \\ {99} \hfill & 0 \hfill & {99} \hfill & 0 \hfill & 0 \hfill & {99} \hfill & {99} \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right) $$

with \( f_{\hbox{max} } = 3 0 4 1 6 0 0 7 7. \)

Problem 18:

$$ {\text{Max}}\;R(m,r) = \prod\limits_{j = 1}^{4} {\left\{ {1 - \left( {1 - r_{j} } \right)^{{m_{j} }} } \right\},} $$

Subject to:

$$ \begin{aligned} & g_{1} (m) = \sum\limits_{j = 1}^{4} {v_{j} .m_{j}^{2} \le v_{Q} } , \\ & g_{2} (m,r) = \sum\limits_{j = 1}^{4} {C(r_{j} ).\left( {m_{j} + \exp \,\left( {m_{j} /4} \right)} \right)} \le C_{Q} , \\ & g_{3} (m) = \sum\limits_{j = 1}^{4} {w_{j} .\left( {m_{j} .\exp \,\left( {m_{j} /4} \right)} \right)} \le w_{Q} , \\ & 1 \le m_{j} \le 10:\,\,{\text{intger}};j = 1,2, \ldots ,4, \\ & 0.5 \le r_{j} \le 1 - 10^{ - 6} ;j = 1,2, \ldots ,4, \\ \end{aligned} $$

where, \( v_{j} \) is the product of weight and volume per element at stage \( j, \) \( w_{j} \) is the weight of each component at stage \( j, \) and \( C(r_{j} ) \) is the cost of each component with reliability \( r_{j} \) at stage \( j \) as follows:

$$ C(r_{j} ) = \alpha_{j} .\left( {\frac{ - T}{{\ln (r_{j} )}}} \right)^{{\beta_{j} }} $$

where \( \alpha_{j} \) and \( \beta_{j} \) are constants representing the physical characteristic of each component at stage \( j \) and \( T \) is the operating time during which the component must not fail. The known optimal solution is \( R(m,r) = 0.999955, \) \( m = [5,5,4,6] \) and \( r = [0.899845,0.887909,0.948990,0.851017]. \) the design data is given below. \( C_{Q} = 400.0,w_{Q} = 500.0,v_{Q} = 250.0,T = 1000\,h. \)

Subsys.

\( 10^{5} .\alpha_{j} \)

\( \beta_{j} \)

\( v_{j} \)

\( w_{j} \)

1

1.0

1.5

1

6

2

2.3

1.5

2

6

3

0.3

1.5

3

8

4

2.3

1.5

2

7

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Singh, A., Deep, K. (2017). Hybridized Gravitational Search Algorithms with Real Coded Genetic Algorithms for Integer and Mixed Integer Optimization Problems. In: Deep, K., et al. Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-10-3322-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3322-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3321-6

  • Online ISBN: 978-981-10-3322-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics