Skip to main content

A Family P System of Realizing RSA Algorithm

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 681))

Abstract

P system is a new kind of distributed parallel computing model, and many variants of it are proposed to solve the problems such as NP problems, arithmetic operation, image processing. RSA is a classic asymmetric encryption algorithm which plays a very import role in the field of the information security and it is used widely in data transmission and digital signature. This paper is based on P system to realize the RSA algorithm in parallel which includes key generation and encryption & decryption, then a cell-like RSA P system \(\varPi _{RSA}\) is designed from this. An instance is given to illustrate the feasibility and effectiveness of our designed P systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fujioka, A., Okamoto, T., Miyaguchi, S.: ESIGN: an efficient digital signature implementation for smart cards. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 446–457. Springer, Heidelberg (1991). doi:10.1007/3-540-46416-6_38

    Google Scholar 

  3. Takagi, T.: Fast RSA-type cryptosystem modulo p k q. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998). doi:10.1007/BFb0055738

    Chapter  Google Scholar 

  4. Yu, Y., Xue, L., Man, H.A., et al.: Cloud data integrity checking with an identity-based auditing mechanism from RSA. Future Gener. Comput. Syst. 62(C), 85–91 (2016)

    Article  Google Scholar 

  5. Zhou, Y.B., Zhang, Z.F., Qing, S.H., et al.: A new CEMBS based on RSA signatures and its application in constructing fair exchange protocol. In: IEEE International Conference on E-Technology, E-Commerce and E-Service, pp. 558–562 (2004)

    Google Scholar 

  6. Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. doi:10.1038/srep27624

  7. Song, B., Song, T., Pan, L.: Time-free solution to SAT problem by P systems with active membranes and standard cell division rules. Nat. Comput. 14(4), 673–681 (2015)

    Article  MathSciNet  Google Scholar 

  8. Christinal, H.A., Díaz-Pernil, D., Jurado, P.R., Selvan, S.E.: Color segmentation of 2D images with thresholding. In: Mathew, J., Patra, P., Pradhan, D.K., Kuttyamma, A.J. (eds.) ICECCS 2012. CCIS, vol. 305, pp. 162–169. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32112-2_20

    Chapter  Google Scholar 

  9. Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  10. Pan, L., Alhazov, A.: Solving HPP and SAT by P systems with active memabrabes and separation rules. Acta Informatica 43, 131–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ishii, K., Fujiwara, A., Tagawa, H.: Asynchronous P systems for SAT and Hamiltonian cycle problem. In: Nature and Biologically Inspired Computing, pp. 513–519. IEEE (2010)

    Google Scholar 

  12. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  13. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  14. Puan, G.: Membrane Computing: An Introduction. Springer, Secaucus (2002)

    Book  Google Scholar 

  15. Alhazov, A., Bonchi, C., Ciobanu, G., Isbasa, C.: Encodings and arithmetic operations in P systems. In: The Proceedings of Fourth Brainstorming Week on Membrane Computing, Sevilla, pp. 13–39 (2006)

    Google Scholar 

  16. Guo, P., Chen, H., Zhang, H.: An integrated P system for arithmetic operations. J. Comput. Theor. Nanosci. 12(10), 3346–3356 (2015)

    Article  Google Scholar 

  17. Guo, P., Chen, H., Zheng, H.: Arithmetic expression evaluations with membranes. Chin. J. Electron. 23(CJE–1), 55–60 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Guo, P., Xu, W. (2016). A Family P System of Realizing RSA Algorithm. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics