Abstract
Membrane computing is a distributed and parallel bio-inspired computing paradigm providing new computing models. The computational model of membrane computing is called “P systems”. Despite several P systems simulation tools have been built, the general object-oriented framework of P systems lacks. This study gives the computer storage structure of P systems, the object-oriented static model and the object-oriented dynamic model of membrane computing using Umlet. This study intuitively gives the concepts and operations involved in the membrane computing, which facilitates a better understanding of the thought of membrane computing, and provides support for research personnel having no membrane computing foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Păn, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., Oxford (2010)
Martín-Vide, C., Păun, G., Pazos, J.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)
Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71(2), 279–308 (2006)
Song, T., Wang, X.: Homogenous spiking neural P systems with inhibitory synapses. Neural Process. Lett. 42(1), 199–214 (2015)
Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. Nanobiosci. 14(1), 38–44 (2015)
Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. Nanobiosci. 14(4), 465–477 (2015)
Cavaliere, M., Ibarra, H., Păun, G., Woodworth, S., Egecioglu, O., Ionescu, M.: Asynchronous spiking neural P systems. Theor. Comput. Sci. 410(24), 2352–2364 (2009)
Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(12), 193–200 (2016)
Song, T., Zheng, P., Dennis Wong, M.L., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. (2016). doi:10.1016/j.ins.2016.08.055
Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. NanoBiosci. (2016). doi:10.1109/TNB.2016.2598879
Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundam. Inform. 97(1), 275–294 (2009)
Song, T., Zou, Q., Zeng, X., Liu, X.: Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 151(1), 1439–1445 (2015)
Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max spike number. Theor. Comput. Sci. 410(30), 2982–2991 (2009)
Song, T., Xu, J., Pan, L.: On the universality and non-nniversality of spiking neural P systems with rules on synapses. IEEE Trans. Nanobiosci. 14(8), 960–966 (2015)
Wang, X., Song, T., Gong, F., Zheng, P.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. 6, 27624 (2016). doi:10.1038/srep27624
Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using P systems: the lac operon, a case study. BioSystems 91(3), 438–457 (2008)
Enguix, G.B.: Preliminaries about some possible applications of P systems in linguistics. In: PĂun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 74–89. Springer, Heidelberg (2003). doi:10.1007/3-540-36490-0_6
Enguix, G.B.: Unstable P systems: applications to linguistics. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 190–209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31837-8_11
Song, T., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with anti-spikes. Neural Process. Lett. 42(3), 633–647 (2015)
Díaz-Pernil, D., Berciano, A., Pena-Cantillana, F., GutiéRrez-Naranjo, M.A.: Segmenting images with gradient-based edge detection using membrane computing. Pattern Recogn. Lett. 34(8), 846–855 (2013)
Song, T., Zheng, H., He, J.: Solving vertex cover problem by tissue P systems with cell division. Appl. Math. Inform. Sci. 8(1), 333–337 (2014)
Păun, G., Păun, R.: Membrane computing and economics: numerical P systems. Fundam. Inform. 73(1–2), 213–227 (2006)
UCI Machine Learning Repository. http://ppage.psystems.eu/index.php/Software
Nguyen, V.T.: An Implementation of the Parallelism, Distribution and Nondeterminism of Membrane Computing models on Reconfigurable Hardware. University of South Australia, Adelaide (2010)
Zhang, G., Cheng, J., Wang, T., Wang, X., Zhu, J.: Membrane Computing: Theory and Applications. Science Press, Beijing (2015)
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Objectoriented Modeling and Design. PreNtice-Hall, Englewood Cliffs (1991)
Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual. Pearson Higher Education, Upper Saddle River (2004)
Acknowledgment
This work was supported by National Natural Science Foundation of China (61472231, 61170038, 61402187, 61502283).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, X., Zhao, Y., Wang, W. (2016). A General Object-Oriented Description for Membrane Computing. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_17
Download citation
DOI: https://doi.org/10.1007/978-981-10-3611-8_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3610-1
Online ISBN: 978-981-10-3611-8
eBook Packages: Computer ScienceComputer Science (R0)