Skip to main content

Parallel Contextual Hexagonal Array P Systems

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Abstract

We introduce new P system models, called as external and internal parallel contextual hexagonal array P systems, based on the external and internal parallel contextual hexagonal array grammars. We can generate hexagonal arrays using these P system models with the help of Z-direction, X-direction and Y-direction external or internal parallel contextual hexagonal array rules. We discuss some basic properties of these P systems and give some comparison results in terms of their generative powers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.G.: Array - rewriting P systems. Nat. Comput. 2, 229–249 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dersanamibika, K.S., Krithivasan, K.: Contextual array P systems. Int. J. Comput. Math. 81(8), 955–969 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dersanambika, K.S., Krithivasan, K., Agarwal, H.K., Gupta, J.: Hexagonal contextual array P systems. In: Formal Models, Languages and Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 79–96 (2006)

    Google Scholar 

  4. Dersanambika, K.S., Krithivasan, K., Martin-Vide, C., Subramanian, K.G.: Local and recognizable hexagonal picture languages. Int. J. Patt. Recogn. Artif. Intell. 19, 853–871 (2005)

    Article  Google Scholar 

  5. Ehrenfeucht, A., Păun, G., Rosenberg, G.: Contextual grammars and formal languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 237–293. Springer-Verlag, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Chandra, P.H., Subramanian, K.G., Thomas, D.G.: Parallel contextual array grammars and languages. Electron. Notes Discret. Math. 12, 106–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4, 1213–1222 (2005)

    Article  Google Scholar 

  8. Immanuel, S.J., Thomas, D.G., Thamburaj, R., Nagar, A.K.: Parallel contextual array P systems. In: Proceedings of ACMC 2014, Karunya University, Coimbatore

    Google Scholar 

  9. Madhu, M., Krithivasan, K.: Contextual P systems. Fund. Info. 49, 179–189 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures et Appl. 14(10), 1525–1534 (1969)

    MATH  MathSciNet  Google Scholar 

  11. Marcus, S., Martin-Vide, C., Păun, G.: On internal contextual grammarsa with maximal use of selectors. In: The Proceedings of the 8th Conference of Automata and Formal Languages, Salgotarjan (1996)

    Google Scholar 

  12. Martin-Vide, C., Mateescu, A., Miquel-Verges, J., Păun, G.: Contextual grammars with maximal, minimal and scattered use of contexts. In: Koppel, M., Shamir, E. (eds.) The Proceedings of the Fourth Bar-Ylan Symposium of Foundations of Al, BISFAI 1995, Jerusalem, pp. 132–142 (1995)

    Google Scholar 

  13. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Springer-Verlag, Heidelberg (2005)

    MATH  Google Scholar 

  14. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J. Comput. Inf. Technol. 11, 111–122 (2003)

    Article  Google Scholar 

  15. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 20, 63–78 (2004)

    MATH  Google Scholar 

  16. Nagy, B., Strand, R.: A connection between \(\mathbb{Z}\) n and generalized triangular grids. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 1157–1166. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89646-3_115

    Chapter  Google Scholar 

  17. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Păun, G.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  19. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  20. Rosenfeld, A.: Isotonic grammars, parallel grammars and picture grammars. In: Michie, D., Meltzer, D. (eds.) Machine Intelligence, vol. 6, pp. 281–294. University of Edinburgh Press, Scotland (1971)

    Google Scholar 

  21. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Acadamic Press, Cambridge (1979)

    MATH  Google Scholar 

  22. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture languages. Comput. Graph. Image Process. 1, 234–307 (1972)

    MATH  MathSciNet  Google Scholar 

  23. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewriting rules. Inf. Control 22, 447–470 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Siromoney, G., Siromoney, R.: Hexagonal arrays and rectangular blocks. Comput. Graph. Image Process. 5, 353–381 (1976)

    Article  MATH  Google Scholar 

  25. Subramanian, K.G., Venkat, I., Wiederhold, P.: A P system model for contextual array languages. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 154–165. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34732-0_12

    Chapter  Google Scholar 

  26. Thomas, D.G., Begam, M.H., David, N.G.: Parallel contextual hexagonal array grammars and languages. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 344–357. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10210-3_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Immanuel Suseelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Suseelan, J.I., Thomas, D.G., Thamburaj, R., Nagar, A.K., Jayasankar, S. (2016). Parallel Contextual Hexagonal Array P Systems. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics