Skip to main content

Matrix Flat Splicing Systems

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 681))

  • 982 Accesses

Abstract

In dealing with the problem of modelling DNA recombination, the operation of splicing on linear and circular strings of symbols was introduced. Inspired by splicing on circular strings, the operation of flat splicing on a pair of strings (uv) was considered. This operation involves “cutting” u at a specified position and “inserting” v into it, with v having a pre-specified prefix as well as suffix defined by a flat splicing rule. In this work, we consider a well-known technique in formal language theory, known as “matrix of rules”, and introduce matrix of flat splicing rules and thus define matrix flat splicing system (MFSS). Some results on the language generative power of MFSS are provided. An application of MFSS in the generation of chain code pictures is also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berstel, J., Boasson, L., Fagnot, I.: Splicing systems and the chomsky hierarchy. Theor. Comput. Sci. 436, 2–22 (2012)

    Article  MATH  Google Scholar 

  2. Ceterchi, R., Subramanian, K.G., Venkat, I.: P systems with parallel rewriting for chain code picture languages. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 145–155. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20028-6_15

    Chapter  Google Scholar 

  3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  4. Dassow, J., Fernau, H., Păun, G.: On the leftmost derivation in matrix grammars. Int. J. Found. Comput. S. 10, 61–79 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fernau, H.: Even linear simple matrix languages: formal language properties and grammatical inference. Theor. Comput. Sci. 289, 425–456 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gutbrod, R.: A transformation system for generating description languages of chain code pictures. Theor. Comput. Sci. 68, 239–252 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. B. Math. Biol. 49, 735–759 (1987)

    Article  MATH  Google Scholar 

  8. Head, T., Păun, G., Pixton, D.: Language theory and molecular genetics: generative mechanisms suggested by DNA recombination. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 295–358. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Head, T.: Splicing schemes and DNA. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer Systems, pp. 371–383. Springer, Berlin (1992)

    Chapter  Google Scholar 

  10. Ibarra, O.H.: Simple matrix languages. Inf. Contro. 17, 359–394 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kim, C., Sudborough, I.H.: The membership and the equivalence problem for picture languages. Theor. Comput. Sci. 52, 177–191 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klein, A., Kutrib, M.: Context-free grammars with linked nonterminals. Int. J. Found. Comput. S. 18, 1271–1282 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture languages. Inf. Contro. 54, 155–185 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Meduna, A., Zemek, P.: Regulated Grammars and Automata. Springer, New York (2014)

    Book  MATH  Google Scholar 

  15. Păun, G., Pérez-Jiménez, M.J.: dP automata versus right-linear simple matrix grammars. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012. LNCS, vol. 7160, pp. 376–387. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27654-5_29

    Chapter  Google Scholar 

  16. Rosebrugh, R.D., Wood, D.: Image theorems for simple matrix languages and \(n\)-parallel languages. Math. Syst. Theor. 8(2), 150–155 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  18. Salomaa, A.: Matrix grammars with a leftmost restriction. Inf. Contro. 20, 143–149 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sudborough, I.H., Welzl, E.: Complexity and decidability for chain code picture languages. Theor. Comput. Sci. 36, 173–202 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Subramanian, K.G., Venkat, I., Pan, L.: P systems generating chain code picture languages. In: Proceedings of Asian Conference on Membrane Computing, Wuhan, pp. 115–123 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for useful comments. The work of L. Pan and B. Song was supported by National Natural Science Foundation of China (61033003, 61320106005 and 61602192), Ph.D. Programs Foundation of Ministry of Education of China (20120142130008), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012). K.G. Subramanian is grateful to UGC, India, for the award of Emeritus Fellowship (No. F.6-6/2016-17/EMERITUS-2015-17-GEN-5933/(SA-II)) to him to execute his work in the Department of Mathematics, Madras Christian College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linqiang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ceterchi, R., Pan, L., Song, B., Subramanian, K.G. (2016). Matrix Flat Splicing Systems. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics