Skip to main content

A Universal Platform for Building DNA Logic Circuits

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 681))

  • 1000 Accesses

Abstract

DNA strand displacement has great potential for use in logic circuits. In the paper, the two DNA-based logic circuits that behave as half-subtract and half-adder were implemented relying on strand displacement and fluorescence labeling technique. The half-adder and half-subtract were achieved by simply modifying the sequences of the input strands, while retaining the same DNA logical structure as a universal platform. By taking advantage of the branch migration mechanism, separation and combination of fluorescent group were controlled, two series of fluorescence signals were defined as the output signal. We simulated within the Visual DSD design tool which analyzes their performance and proves the correctness of the circuits. The system reported herein is rather concise compared to other molecular logic gate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, X.: Probe machine. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1405–1416 (2016)

    Article  MathSciNet  Google Scholar 

  2. Shi, X., Wei, L., Wang, Z., Pan, L., Cui, G., Jin, X., LaBean, T.H.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)

    Article  Google Scholar 

  3. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS ONE 9(10), e108856 (2014)

    Article  Google Scholar 

  4. Yang, J., Dong, C., Dong, Y., Liu, S., Pan, L., Zhang, C.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. 6(16), 14486–14492 (2014). doi:10.1371/journal.pone.0108856

    Article  Google Scholar 

  5. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  6. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  7. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  8. Lin, H.Y., Chen, J.Z., Li, H.Y., Yang, C.N.: A simple three-input DNA-based system works as a full-subtractor. Sci. Rep. 5(6), 2045–2322 (2015)

    Google Scholar 

  9. Yang, C.N., Hsu, C.Y., Chuang, Y.C.: Molecular beacon-based half-adder and half-subtractor. Chem. Commun. 48(1), 112–114 (2012)

    Article  Google Scholar 

  10. Saghatelian, A., Guckian, K.M., Thayer, D.A., et al.: DNA detection and signal amplification via an engineered allosteric enzyme. J. Am. Chem. Soc. 125(2), 344–345 (2003)

    Article  Google Scholar 

  11. Wang, Z., Zhang, W., Wang, Y., Cui, G.: A DNA code converter model for decimal numbers displaying. J. Comput. Theor. Nanosci. 562, 447–455 (2015)

    Google Scholar 

  12. Xu, S.L., Li, H.L., Miao, Y.Q., et al.: Implementation of half adder and half subtractor with a simple and universal DNA-based platform. NPG Asia Mater. 5, e76 (2013)

    Article  Google Scholar 

  13. Matthew, L., Simon, Y.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  14. Lakin, M.R., Yourssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. R. Soc. Interface 9(68), 470–486 (2012)

    Article  Google Scholar 

  15. Yang, J., Ma, J., Liu, S., Zhang, C.: A molecular cryptograph model based on structures of DNA self-assembly. Comput. Sci. Technol. 59(11), 1192–1198 (2014)

    Google Scholar 

  16. Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45(7), 1353–1362 (2015)

    Article  Google Scholar 

  17. Sun, J., Quan, Y., Shen, Y.: Compound synchronization for four chaotic systems of integer order, fractional order. Europhys. Lett. 106(4), 40005 (2014)

    Article  Google Scholar 

  18. Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Junwei, S., Guangzhao, C., Yanfeng, W., Yi, S.: Combination complexsynchronization of three chaotic complex systems. Nonlinear Dyn. 79(2), 953–965 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(12), 193–200 (2016)

    Article  Google Scholar 

  21. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

    Google Scholar 

  22. Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  23. Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. doi:10.1038/srep27624

  24. Shi, X., Wu, X., Song, T., Li, X.: Construction of DNA nanotubes with controllable diameters and patterns by using hierarchical DNA sub-tiles. Nanoscale. doi:10.1039/C6NR02695H

    Google Scholar 

Download references

Acknowledgment

This work is supported by the NSFC (No. U1304620, 61472372, 61272022), Innovation Scientists and Technicians Troop Construction Projects of Henan (Grant No. 124200510017), and Innovation Scientists Technicians Troop Construction Projects of Zhengzhou (Grant No. 131PLJRC648), Basic and Frontier technologies Research Program of Henan Province (132300410183), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012). Scientific Research Fund Project of Zhengzhou University of Light Industry (2014XJJ013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, Z., Ai, J., Wang, Y., Cui, G., Yao, L. (2016). A Universal Platform for Building DNA Logic Circuits. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics