Skip to main content

Analysis of SNP Network Structure Based on Mutual Information of Breast Cancer Susceptibility Genes

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Abstract

Genome-wide association studies (GWAS) are used to identify diseases associated with single nucleotide polymorphisms (SNPs). But many existing methods did not consider the interactions among SNPs while SNPs form a network in complex interrelated ways. In our research, we attempted to establish case and control mutual information networks based on simulation data of breast cancer associated gene BRCA2. By constructing the network and comparing the network statistics, the average degree of network is found to clearly distinguish the case and control groups. Starting from the network structure, we put forward a method to find “structural key SNPs”, and got four structural key SNPs. Two out of these four SNPs are pre-assigned causal SNPs in BRCA2. A large number of simulative experiments and results illustrate the feasibility of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Risch, N., Merikangas, K.: The future of genetic studies of complex human diseases. Sci. 273(5281), 1516–1517 (1996). AAAS Weekly Paper Edition

    Article  Google Scholar 

  2. Yuyan, M., Yanmei, Y., Huilong, C.: Relationship between genotype of rs3803662 locus in TOX3 gene and clinical and pathological characteristics of breast cancer. Pract. Oncol. J. 25(6), 501–505 (2011)

    Google Scholar 

  3. Ghoussaini, M., Fletcher, O., Michailidou, K., et al.: Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat. Genet. 44(3), 312–318 (2012)

    Article  Google Scholar 

  4. Wei, K., Chenxi, H., Xiaoyang, M.: Reliability feature extraction of breast cancer gene expression data based on ICASSO. Acta Universitatis Medicinalis Anhui 48(10), 1252–1255 (2013)

    Google Scholar 

  5. Szymczak, S., Igl, B.W., Ziegler, A.: Detecting SNP-expression associations: a comparison of mutual information and median test with standard statistical approaches. Stat. Med. 28(29), 3581–3596 (2009)

    Article  MathSciNet  Google Scholar 

  6. Liu, Z., Lin, S.: Multilocus LD measure and tagging SNP selection with generalized mutual information. Genet. Epidemiol. 29(4), 353–364 (2005)

    Article  Google Scholar 

  7. Zhang, W., Shang, J., Li, H.: SIPSO: selectively informed particle swarm optimization based on mutual information to determine SNP-SNP interactions. Springer, Berlin (2016)

    Google Scholar 

  8. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomput. 193(12), 193–200 (2016)

    Article  Google Scholar 

  9. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

    Google Scholar 

  10. Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  11. Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. 6, 27624 (2016). doi:10.1038/srep27624

    Article  Google Scholar 

  12. Shi, X., Wu, X., Song, T., Li, X.: Construction of DNA nanotubes with controllable diameters and patterns by using hierarchical DNA sub-tiles. Nanoscale 8, 14785–14792 (2016). doi:10.1039/C6NR02695H

    Article  Google Scholar 

  13. Mani, R., St Onge, R.P., Giaever, G.: Defining genetic interaction. Proc. Natl. Acad. Sci. U.S.A. 105(9), 3461–3466 (2008)

    Article  Google Scholar 

  14. Wang, S., Li, K., Xu, X.: Structural characteristics of gene networks for colon cancer. In: IEEE International Conference on Signal Processing, Piscataway, NJ, pp. 1–6 (2011)

    Google Scholar 

  15. Baranzini, S.E., Galwey, N.W., Wang, J.: Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18(11), 2078–2090 (2009)

    Article  Google Scholar 

  16. Bowers, P.M., O’Connor, B.D., Cokus, S.J.: Utilizing logical relationships in genomic data to decipher cellular processes. FEBS J. 272(20), 5110–5118 (2005)

    Article  Google Scholar 

  17. Cabrol, S.: Network properties of complex human disease genes identified through genome-wide association studies. Plos One 4(11), e8090 (2009)

    Article  Google Scholar 

  18. Benesty, P.J., Chen, J., Huang, Y.: Pearson correlation coefficient. In: Benesty, P.J., Chen, J., Huang, Y. (eds.) Noise Reduction in Speech Processing, pp. 1–4. Springer, Berlin (2009)

    Google Scholar 

  19. Artusi, R., Verderio, P., Marubini, E.: Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval. Int. J. Biol. Markers 17(2), 148–151 (2002)

    Google Scholar 

  20. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinf. 22(20), 2523–2531 (2006)

    Article  Google Scholar 

  21. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  22. Su, Z., Marchini, J., Donnelly, P.: HAPGEN2: simulation of multiple disease SNPs. Bioinf. 27(16), 2304–2305 (2011)

    Article  Google Scholar 

  23. Song, T., Zou, Q., Zeng, X., Liu, X.: Asynchronous spiking neural P systems with rules on synapses. Neurocomput. 151(3), 1439–1445 (2015)

    Article  Google Scholar 

  24. Song, T., Wang, X., Zhang, Z., Chen, Z.: Homogenous spiking neural P systems with anti-spikes. Neural Comput. Appl. 24(7–8), 1833–1841 (2014)

    Article  Google Scholar 

  25. Song, T., Wang, X.: Homogeneous spiking neural P systems with inhibitory synapses. Neural Process. Lett. 42(1), 199–214 (2015)

    Article  MathSciNet  Google Scholar 

  26. Song, T., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with anti-spikes. Neural Process. Lett. 42(3), 633–647 (2015)

    Article  Google Scholar 

  27. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking Neural P Systems with White Hole Neurons. IEEE Trans. Nanobiosci. (2016, in press)

    Google Scholar 

  28. Song, T., Zheng, P., Wong, M.D., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  29. Zhang, X., Wang, B., Pan, L.: Spiking neural P systems with a generalized use of rules. Neural Comput. 26(12), 2925–2943 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural P systems with thresholds. Neural Comput. 26(7), 1340–1361 (2014)

    Article  MathSciNet  Google Scholar 

  31. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PloS ONE 9, e108856 (2014)

    Article  Google Scholar 

  32. Wang, X., Song, T., Wang, Z., Yansen, S., Liu, X.: MRPGA: motif detecting by modified random projection strategy and genetic algorithm. J. Comput. Theor. Nanosci. 10, 1209–1214 (2013)

    Article  Google Scholar 

  33. Song, T., Pan, L., Wang, J., Venkat, I., Subramanian, K.G., Abdullah, R.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 4(11), 352–359 (2012)

    Article  Google Scholar 

  34. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 37–43 (2015)

    Google Scholar 

  35. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  36. Tingfang, W., Zhang, Z., Gong, F., Song, T., Chen, Z., Zhang, P., Zhao, Y.: NES-REBS: a novel nuclear export signal prediction method using regular expressions and biochemical properties. J. Bioinf. Comput. Biol. 3, 1650013 (2016)

    Google Scholar 

  37. Shi, X., Li, X., Song, T., Chen, Z.: A universal fast colorimetric method for DNA signal detection. J. Nanomater. (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (61402187, 61502535, 61572522 and 61572523), China Postdoctoral Science Foundation funded project (2016M592267), Natural Science Foundation Project of CQ CSTC (No.cstc2012jjA40059), and Fundamental Research Funds for the Central Universities (R1607005A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, S. et al. (2016). Analysis of SNP Network Structure Based on Mutual Information of Breast Cancer Susceptibility Genes. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-10-3614-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3614-9_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3613-2

  • Online ISBN: 978-981-10-3614-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics