Skip to main content

Leaf Area Index Estimation of Winter Pepper Based on Canopy Spectral Data and Simulated Bands of Satellite

  • Conference paper
  • First Online:
Geo-Spatial Knowledge and Intelligence (GRMSE 2016)

Abstract

Leaf area index (LAI) is an important indicator of crop growth status. In this paper, the relationships between canopy reflectance at 400–2500 nm and leaf area index (LAI) in pepper crop were studied. 102 pair of canopy reflectance and LAI of pepper were collected in 2014–2015. Reflectance of canopy were measured in the field over a spectral range of 400–2500 nm. Simultaneously, the LAI were collected by the LAI-2000. Estimation models of LAI were developed based on the whole spectrum range by partial least squares regression (PLSR) and support vector regression (SVR), respectively. Then the field canopy spectra were resampled according to the band response functions of seven satellite sensors. They were the Vegetation and environment monitoring on a new micro-satellite (VENμS), Worldview-2 (WV-2), RapidEye-1 (RE-1), HJ1/CCD1, Sentinel-2, Landsat 8/OLI and GaoFen (GF) 1/WFV1. The values of common used spectral indices were calculated based on the simulated sensor bands, respectively. Prediction models were also developed based on the spectral indices and simulated bands. The results showed that the PLSR model by whole spectrum had the good accuracy of LAI estimation with the R2c = 0.726, RMSEc = 0.462, R2cv = 0.635, RMSEcv = 0.538. For the simulated satellite datasets, the better LAI estimation were obtained by Sentinel-2 and Venμs bands with the R2cv greater than 0.600 and RMSEcv less than 0.557. The Estimation model by simulated WV-2 bands, and RE-1 bands had the lowest performance with the R2cv between 0.50 and 0.55, and RMSEcv between 0.600 and 0.623. The inversion results demonstrated the potential of the multispectral remote sensing data to calibrate the LAI estimation model of winter pepper for the precision agriculture application.

Work was supported by the National Natural Science Foundation of China (No. 41301401), the Guangdong Natural Science Foundation (No. 2015A030313805) and the Guangdong Science & Technology Plan Foundation (Nos. 2015A030303013 and 2013B020501006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Hu, F., Huang, J.: Climatic suitability and regionalization of pepper planted in winter in Guangdong based on GIS. Meteorol. Environ. Sci. 37(3), 76–80 (2014)

    Google Scholar 

  2. Fang, H., Liang, S., Hoogenboom, G.: Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote Sens. 32(4), 1039–1065 (2011)

    Article  Google Scholar 

  3. Liu, K., Zhou, Q., Wu, W., Xia, T., Tang, H.: Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 15(2), 475–491 (2016)

    Article  Google Scholar 

  4. Soudani, K., François, C., Maire, G.L., Dantec, V.L., Dufrêne, E.: Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 102(1–2), 161–175 (2006)

    Article  Google Scholar 

  5. Kobayashi, H., Suzuki, R., Kobayashi, S.: Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: multi-satellite data and radiative transfer analyses. Remote Sens. Environ. 106(2), 238–252 (2007)

    Article  Google Scholar 

  6. Liu, Q., Liang, S., Xiao, Z., Fang, H.: Retrieval of leaf area index using temporal, spectral, and angular information from multiple satellite data. Remote Sens. Environ. 145(8), 25–37 (2014)

    Article  Google Scholar 

  7. He, Y., Bo, Y., Chai, L., Liu, X., Li, A.: Linking in situ LAI and fine resolution remote sensing data to map reference LAI over cropland and grassland using geostatistical regression method. Int. J. Appl. Earth Obs. Geoinf. 50, 26–38 (2016)

    Article  Google Scholar 

  8. Li, H., Chen, Z., Jiang, Z., Wu, W., Ren, J., Liu, B., Hasi, T.: Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 16, 266–285 (2016). doi:10.1016/S2095-3119(15)61293-X

    Article  Google Scholar 

  9. Wu, M., Wu, C., Huang, W., Niu, Z., Wang, C.: High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. Comput. Electron. Agric. 115, 1–11 (2015)

    Article  Google Scholar 

  10. Viña, A., Gitelson, A.A., Nguy-Robertson, A.L., Peng, Y.: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 115(12), 3468–3478 (2011)

    Article  Google Scholar 

  11. Nguy-Robertson, A.L., Peng, Y., Gitelson, A.A., Arkebauer, T.J., Pimstein, A., Herrmann, I., Karnieli, A., Rundquist, D.C., Bonfil, D.J.: Estimating green LAI in four crops: potential of determining optimal spectral bands for a universal algorithm. Agric. Forest Meteorol. 192–193, 140–148 (2014)

    Article  Google Scholar 

  12. Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., Bonfil, D.J.: LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 115(8), 2141–2151 (2011)

    Article  Google Scholar 

  13. Masemola, C., Cho, M.A., Ramoelo, A.: Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa. Int. J. Remote Sens. 37(18), 4401–4419 (2016)

    Article  Google Scholar 

  14. Ganguly, S., Nemani, R.R., Zhang, G., Hashimoto, H., Milesi, C., Michaelis, A., Wang, W., Votava, P., Samanta, A., Melton, F.: Generating global Leaf Area Index from Landsat: algorithm formulation and demonstration. Remote Sens. Environ. 122(1), 185–202 (2012)

    Article  Google Scholar 

  15. Szporak-Wasilewska, S., Krettek, O., Berezowski, T., Ejdys, B., Łukasz, S., Borowski, M., Będkowski, K., Chormański, J.: Leaf area index of forests using ALS, Landsat and ground measurements in Magura National Park (Se Poland). EARSele Proc. 13(2), 103–111

    Google Scholar 

  16. Kovacs, J.M., Wang, J., Flores-Verdugo, F.: Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar. Coast. Shelf Sci. 62(1–2), 377–384 (2015)

    Google Scholar 

  17. Colombo, R., Bellingeri, D., Fasolini, D., Marino, C.M.: Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 86(1), 120–131 (2003)

    Article  Google Scholar 

  18. Gu, Z., Ju, W., Liu, Y., Li, D., Fan, W.: Forest leaf area index estimated from tonal and spatial indicators based on IKONOS_2 imagery. Int. J. Remote Sens. Appl. 3(4), 175–184 (2013)

    Article  Google Scholar 

  19. Aboelghar, M., Arafat, S., Saleh, A., Naeem, S., Shirbeny, M., Belal, A.: Retrieving leaf area index from SPOT4 satellite data. Egypt. J/ Remote Sens. Sci. 13(2), 121–127 (2010)

    Google Scholar 

  20. Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C.: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 34(1), 235–248 (2015)

    Article  Google Scholar 

  21. Beckschaefer, P., Fehrmann, L., Harrison, R.D., Xu, J., Kleinn, C.: Mapping leaf area index in subtropical upland ecosystems using RapidEye imagery and the RandomForest algorithm. iForest – Biogeosci. Forest. 7(1), 1–11 (2013)

    Article  Google Scholar 

  22. Richter, K., Hank, T.B., Vuolo, F., Mauser, W., D’Urso, G.: Optimal exploitation of the sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens. 4(3), 561–582 (2012)

    Article  Google Scholar 

  23. Chen, B., Wu, Z., Wang, J., Dong, J., Guan, L., Chen, J., Yang, K., Xie, G.: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network. ISPRS J. Photogramm. Remote Sens. 102(11), 148–160 (2015)

    Article  Google Scholar 

  24. Li, X., Zhang, Y., Luo, J., Jin, X., Xu, Y., Yang, W.: Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons. Int. J. Appl. Earth Obs. Geoinf. 44, 104–112 (2016)

    Article  Google Scholar 

  25. Wang, L., Yang, R., Tian, Q., Yang, Y., Zhou, Y., Sun, Y., Mi, X.: Comparative analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applications. Remote Sens. 7(2), 2089–2108 (2015)

    Article  Google Scholar 

  26. Gao, L., Li, C., Wang, B., Yang, G., Wang, L., Fu, K.: Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data. Chin. J. Appl. Ecol. 27(1), 191–200 (2016)

    Google Scholar 

  27. Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C., Dejoux, J.F., Huc, M., Keravec, P., Béziat, P.: Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 124(6), 844–857 (2012)

    Article  Google Scholar 

  28. Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W., Harlan, J.C.: Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. NASA/GSFCT Type III Final report. Nasa (1974)

    Google Scholar 

  29. Gonsamo, A.: Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices. Int. J. Remote Sens. 32(7), 2069–2080 (2011)

    Article  Google Scholar 

  30. Gitelson, A.A., Merzlyak, M.N.: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148(3–4), 494–500 (1996)

    Article  Google Scholar 

  31. Jiang, Z., Huete, A.R., Didan, K., Miura, T.: Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112(10), 3833–3845 (2008)

    Article  Google Scholar 

  32. Rondeaux, G., Steven, M., Baret, F.: Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55(2), 95–107 (1996)

    Article  Google Scholar 

  33. Peñuelas, J., Filella, I., Elvira, S., Inclán, R.: Reflectance assessment of summer ozone fumigated Mediterranean white pine seedlings. Environ. Exp. Bot. 35(95), 299–307 (1995)

    Article  Google Scholar 

  34. Dash, J., Curran, P.J.: Evaluation of the MERIS terrestrial chlorophyll index. Adv. Space Res. 39, 100–104 (2004)

    Article  Google Scholar 

  35. Kaufman, Y.J., Tanré, D.: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30(2), 261–270 (1992)

    Article  Google Scholar 

  36. Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M., Akhmedov, B.: A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21(1), 103–112 (2013)

    Article  Google Scholar 

  37. Gitelson, A.A., Andrés, V., Verónica, C., Rundquist, D.C., Arkebauer, T.J.: Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32(8), 93–114 (2005)

    Article  Google Scholar 

  38. Clevers, J.G.P.W., Jong, S.M.D., Epema, G.F., Meer, F.V.D., Bakker, W.H., Skidmore, A.K., Addink, E.A.: MERIS and the red-edge position. Int. J. Appl. Earth Obs. Geoinf. 3(4), 313–320 (2001)

    Article  Google Scholar 

  39. Fitzgerald, G.J., Rodriguez, D., Christensen, L.K., Belford, R., Sadras, V.O., Clarke, T.R.: Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agric. 7(4), 233–248 (2006)

    Article  Google Scholar 

  40. Fitzgerald, G., Rodriguez, D., O’Leary, G.: Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—the canopy chlorophyll content index (CCCI). Field Crops Res. 116(3), 318–324 (2010)

    Article  Google Scholar 

  41. Li, F., Mistele, B., Hu, Y., Yue, X., Yue, S., Miao, Y., Chen, X., Cui, Z., Meng, Q., Schmidhalter, U.: Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crops Res. 138(3), 21–32 (2012)

    Article  Google Scholar 

  42. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2–3), 337–354 (2002)

    Article  Google Scholar 

  43. Axelsson, C., Skidmore, A., Schlerf, M., Fauzi, A., Verhoef, W.: Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. Int. J. Remote Sens. 34(5), 1724–1743 (2013)

    Article  Google Scholar 

  44. Rossel, R.A.V., McGlynn, R.N., McBratney, A.B.: Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 137(1–2), 70–82 (2006)

    Article  Google Scholar 

  45. Zh, L., Ch, N., Ch, W., Xu, X., Song, X., Wang, J.: Comparison of four chemometric techniques for estimating leaf nitrogen concentrations in winter wheat (TriticumAestivum) based on hyperspectral features. J. Appl. Spectrosc. 83(2), 1–8 (2016)

    Article  Google Scholar 

  46. Vohland, M., Besold, J., Hill, J., Fründ, H.C.: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 166(1), 198–205 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuisen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, D., Jiang, H., Chen, S., Wang, C., Huang, S., Liu, W. (2017). Leaf Area Index Estimation of Winter Pepper Based on Canopy Spectral Data and Simulated Bands of Satellite. In: Yuan, H., Geng, J., Bian, F. (eds) Geo-Spatial Knowledge and Intelligence. GRMSE 2016. Communications in Computer and Information Science, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-10-3966-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3966-9_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3965-2

  • Online ISBN: 978-981-10-3966-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics