Abstract
In this article, we model an “Imprecise Constrained Covering Solid Travelling Salesman Problem with Credibility” (ICCSTSPC), a generalization of Covering Salesman Problem (CSP), in fuzzy environment. A salesman begins from an initial node, visits a subset of nodes exactly once using any one of appropriate vehicles available at each step, so that unvisited nodes are within a predetermined distance from the visited nodes, and returns to the initial node within a restricted time. Here the travelling costs and travelling times between any two nodes and the covering distance all are considered as fuzzy. Thus the problem reduces to find the optimal tour for a set of nodes with the proper conveyances so that total travelling cost is minimum within a restricted time. The ICCSTSPC is reduced to a set of Imprecise Constrained Covering Solid Travelling Salesman Problems by solving Unicost Set Cover Problem (USCP) using Random Insertion-Deletion (RID). These reduced Constrained Solid Travelling Salesman Problems (CSTSPs) are solved by an Improved Genetic Algorithm (IGA), which consists of probabilistic selection, order crossover, proposed generation dependent inverse mutation. A random mutation for vehicles is proposed to get a better cost at each generation of IGA by choosing an alternative vehicle for each node. Hence the ICCSTSPC is solved by a random insertion-deletion (RID) for covering set and IGA, i.e., RID-IGA. To justify the performance of the RID-IGA, some test problems are solved. The model is illustrated with some randomly generated crisp and fuzzy data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, T., Wan, Y., Tooi, W.: A stochastic dynamic travelling salesman problem with hard time windows. Eur. J. Oper. Res. 198(3), 748–759 (2009)
Changdar, C., Maiti, M.K., Maiti, M.: A Constrained solid TSP in fuzzy environment: two heuristic approaches. Iranian J. Fuzzy Syst. 10(1), 1–28 (2013)
Current, J.R., Schilling, D.A.: The covering salesman problem. Transp. Sci. 23(3), 208–213 (1989)
Deb, K., Agarwal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Golden, B.L., Naji-Azimi, Z., Raghavan, S., Salari, M., Toth, P.: The generalized covering salesman problem. INFORMS J. Comput. 24(4), 534–553 (2012)
Hachicha, M., Hodgson, M.J., Laporte, G., Semet, F.: Heuristics for the multi-vehicle covering tour problem. Comput. Oper. Res. 27, 29–42 (2000)
Khanra, A., Maiti, M.K., Maiti, M.: Profit maximization of TSP through a hybrid algorithm. Comput. Ind. Eng. 88, 229–236 (2015)
Liu, B.: A survey of credibility theory. Fuzzy Optim. Decis. Making 5, 387–408 (2006)
Maity, S., Roy, A., Maiti, M.: A modified genetic algorithm for solving uncertain constrained solid travelling salesman problems. Comput. Ind. Eng. 83, 273–296 (2015)
Majumder, A.K., Bhunia, A.K.: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. J. Comput. Appl. Math. 235(9), 3063–3078 (2011)
Mestria, M., Ochi, L.S., Martins, S.L.: GRASP with path relinking for the symmetric Euclidean clustered traveling salesman problem. Comput. Oper. Res. 40(12), 3218–3229 (2013)
Moon, C., Ki, J., Choi, G., Seo, Y.: An efficient genetic algorithm for the traveling salesman problem with precedence constraints. Eur. J. Oper. Res. 140, 606–617 (2002)
Salari, M., Naji-Azimi, Z.: An integer programming-based local search for the covering salesman problem. Comput. Oper. Res. 39, 2594–2602 (2012)
Salari, M., Reihaneh, M., Sabbagh, M.S.: Combining ant colony optimization algorithm and dynamic programming technique for solving the covering salesman problem. Comput. Ind. Eng. 83, 244–251 (2015)
Xudong, S., Yunlong, X.: An improved adaptive genetic algorithm. In: International Conference on Education Technology and Management Science (ICETMS) (2013)
Zhao, F., Sun, J., Li, S., Liu, W.: A hybrid genetic algorithm for the traveling salesman problem with pickup and delivery. Int. J. Autom. Comput. 6(1), 97–102 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Mukherjee, A., Maity, S., Panigrahi, G., Maiti, M. (2017). Imprecise Constrained Covering Solid Travelling Salesman Problem with Credibility. In: Giri, D., Mohapatra, R., Begehr, H., Obaidat, M. (eds) Mathematics and Computing. ICMC 2017. Communications in Computer and Information Science, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-10-4642-1_16
Download citation
DOI: https://doi.org/10.1007/978-981-10-4642-1_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-4641-4
Online ISBN: 978-981-10-4642-1
eBook Packages: Computer ScienceComputer Science (R0)