Skip to main content

Feature Reduced Weighted Fuzzy Binarization for Histogram Comparison of Promoter Sequences

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 709))

  • 794 Accesses

Abstract

Effective biological sequence analysis methods are in great demand. This is due to the increasing amount of sequence data being generated from the improved sequencing techniques. In this study, we select statistically significant features/motifs from the Position Specific Motif Matrices of promoters. Later, we reconstruct these matrices using the chosen motifs. The reconstructed matrices are then binarized using triangular fuzzy membership values. Then the binarized matrix is assigned weights to obtain the texture features. Histogram is plotted to visualize the distribution of texture values of each promoter and later histogram difference is computed across pairs of promoters. This histogram difference is a measure of underlying dissimilarity in the promoters being compared. A dissimilarity matrix is constructed using the histogram difference values of all the promoter pairs. From the experiments, the combination of feature reduction and fuzzy binarization seems to be useful in promoter differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qin, Y., Yalamanchili, H.K., Qin, J., Yan, B., Wang, J.: The current status and challenges in computational analysis of genomic big data. Big Data Res. 2(1), 12–18 (2015)

    Article  Google Scholar 

  2. Landolin, J.M., Johnson, D.S., Trinklein, N.D., Aldred, S.F., Medina, C., Shulha, H., Myers, R.M.: Sequence features that drive human promoter function and tissue specificity. Genome Res. 20(7), 890–898 (2010)

    Article  Google Scholar 

  3. Wray, G.A., Hahn, M.W., Abouheif, E., Balhoff, J.P., Pizer, M., Rockman, M.V., Romano, L.A.: The evolution of transcriptional regulation in Eukaryotes. Mol. Biol. Evol. 20(9), 1377–1419 (2003)

    Article  Google Scholar 

  4. Ghiurcuta, C.G.: Models and Algorithms for Noncoding Genes. Edic Research Proposal (2009)

    Google Scholar 

  5. Hu, J., Zhao, H., Liang, X., Chen, D.: The analysis of similarity for promoter sequence structures in yeast genes. In: 2012 5th International Conference on IEEE Biomedical Engineering and Informatics (BMEI), pp. 919–922 (2012)

    Google Scholar 

  6. Reiter, L.T., Potocki, L., Chien, S., Gribskov, M., Bier, E.: A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11(6), 1114–1125 (2001)

    Article  Google Scholar 

  7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  8. Liu, X., Krishnan, A., Mondry, A.: An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinform. 6(1), 1 (2005)

    Article  Google Scholar 

  9. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  10. Conilione, P., Wang, D.: A comparative study on feature selection for E.coli promoter recognition. Int. J. Inf. Technol. 11, 54–66 (2005)

    Google Scholar 

  11. López-de-Ipiña, K., Solé-Casals, J., Faundez-Zanuy, M., Calvo, P.M., Sesa, E., de Lizarduy, U.M., Bergareche, A.: Selection of entropy based features for automatic analysis of essential tremor. Entropy 18(5), 184 (2016)

    Article  Google Scholar 

  12. Chitralegha, M., Thangavel, K.: A novel entropy based segment selection technique for extraction of protein sequence motifs. IJCSI Int. J. Comput. Sci. Issues 9(4), 314 (2012)

    Google Scholar 

  13. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Thompson, J.D.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21), 2947–2948 (2007)

    Article  Google Scholar 

  14. http://blast.ncbi.nlm.nih.gov

  15. http://meme-suite.org

  16. Yan, R., Xu, D., Yang, J., Walker, S., Zhang, Y.: A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci. Rep. 3, 2619 (2013)

    Article  Google Scholar 

  17. Kouser, K., Rangarajan, L., Chandrashekar, D.S., Kshitish, K.A., Abraham, E.M.: Alignment free frequency based distance measures for promoter sequence comparison. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015: Bioinformatics and Biomedical Engineering. LNCS, vol. 9044, pp. 183–193. Springer, Cham (2015). doi:10.1007/978-3-319-16480-9_19

    Google Scholar 

  18. Kouser, K., Rangarajan, L.: Promoter sequence analysis through no gap multiple sequence alignment of motif pairs. Procedia Comput. Sci. 58, 356–362 (2015)

    Article  Google Scholar 

  19. Kouser, K., and Rangarajan, L.: Similarity analysis of position specific motif matrices using lacunarity for promoter sequences. In: Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, p. 37. ACM (2014)

    Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  21. Cintra, M.E., Camargo, H.A., Monard, M.C.: A study on techniques for the automatic generation of membership functions for pattern recognition. Congresso da Academia Trinacional de Ciências C3N(1), 1–10 (2008)

    Google Scholar 

  22. Medasani, S., Kim, J., Krishnapuram, R.: An overview of membership function generation techniques for pattern recognition. Int. J. Approxiamate Reasoning 19(3), 391–417 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaya, M., Alhajj, R.: A clustering algorithm with genetically optimized membership functions for fuzzy association rules mining. In: 12th IEEE International Conference on Fuzzy Systems 2, pp. 881–886 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kouser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Kouser, K., Rangarajan, L. (2017). Feature Reduced Weighted Fuzzy Binarization for Histogram Comparison of Promoter Sequences. In: Santosh, K., Hangarge, M., Bevilacqua, V., Negi, A. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2016. Communications in Computer and Information Science, vol 709. Springer, Singapore. https://doi.org/10.1007/978-981-10-4859-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4859-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4858-6

  • Online ISBN: 978-981-10-4859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics