Skip to main content

A Terminology to Classify Artifacts for Cloud Infrastructure

  • Chapter
  • First Online:
Research Advances in Cloud Computing

Abstract

Cloud environments are widely used to offer scalable software services. To support these environments, organizations operating data centers must maintain an infrastructure with a significant amount of resources. Such resources are managed by specific software to ensure service level agreements based on one or more performance metrics. Within such infrastructure, approaches to meet non-functional requirements can be split into various artifacts, distributed across different operational layers, which operate together with the aim of reaching a specific target. Existing studies classify such approaches using different terms, which usually are used with conflicting meanings by different people. Therefore, it is necessary a common nomenclature defining different artifacts, so they can be organized in a more scientific way. To this end, we propose a comprehensive bottom-up classification to identify and classify approaches for system artifacts at the infrastructure level, and organize existing literature using the proposed classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhuo, T., Ling, Q., Zhenzhen, C., Kenli, L., Samee, U., & Khan, K. L. (2016). An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. Journal of Grid Computing, 14(1), 55–74.

    Google Scholar 

  2. Silva-Filho, A. G., Bezerra, P. T. L. F., Silva, Q. B., Junior, A. L. O. C., Santos, A. L. M., Costa, P. H. R., et al. (2012). Energy-aware technology-based DVFS mechanism for the android operating system. In Proceedings of the 2012 Brazilian Symposium on Computing System Engineering (SBESC ’12) (pp. 184–187). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  3. Stijn, E., & Lieven, E. (2011). Fine-grained DVFS using on-chip regulators. ACM Transcations Architecture and Code Optimization, 8(1), 24.

    Google Scholar 

  4. Hafiz, F. S., Hengxing, T., Ishfaq, A., Sanjay, R., & Phanisekhar, B. (2012). Energy-and performance-aware scheduling of tasks on parallel and distributed systems. Journal on Emerging Technologies in Computing Systems, 8(4), 37.

    Google Scholar 

  5. Guérout, T., Monteil, T., Da, C. G., Buyya, R., & Alexandru, M. (2013). Rodrigo neves calheiros. Energy-aware simulation with DVFS. Simulation Modelling Practice and Theory, 39, 76–91.

    Google Scholar 

  6. Isci, C., Liu, J., Abali, B., Kephart, J. O., & Kouloheris, J. (2011). Improving server utilization using fast virtual machine migration. IBM Journal of Research and Developement, 55(6), 365–376.

    Google Scholar 

  7. Zhuang, H., Liu, X., Ou, Z., & Aberer, K. (2013). Impact of instance seeking strategies on resource allocation in cloud data centers. In Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD ’13) (pp. 27–34). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  8. Fischer, A., Fessi, A., Carle, G., & de Meer, H. (2011). Wide-area virtual machine migration as resilience mechanism. In: Proceedings International Workshop on Network Resilience (WNR), Madrid, Spain, October 4, 2011.

    Google Scholar 

  9. Zhu, Y., Ma, D., Huang, D., & Hu, Ch. (2013). Enabling secure location-based services in mobile cloud computing. In Proceedings of the second ACM SIGCOMM workshop on Mobile Cloud Computing (MCC ’13). New York, NY, USA: ACM (pp. 27–32).

    Google Scholar 

  10. Adam, A. K., & Lee, J. (2013, June). Combining social authentication and untrusted clouds for private location sharing. In Proceedings of the 18th ACM Symposium on Access Control Models and Technologies (SACMAT).

    Google Scholar 

  11. Marc, M. T., & Tobias, C. (2012). SecureSafe: A highly secure online data safe industrial use case. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility (MPM ’12) (Article 1, 6 pp.). New York, NY, USA: ACM.

    Google Scholar 

  12. Rosado, T., & Bernardino, J. (2014). An overview of openstack architecture. In Proceedings of the 18th International Database Engineering and Applications Symposium, IDEAS ’14 (pp. 366–367). New York, NY, USA: ACM.

    Google Scholar 

  13. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al. (2009). The eucalyptus open-source cloud-computing system. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09 (pp. 124–131). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  14. Wu, C. M., Chang, R. S., & Chan, H. Y. (2014). A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Future Generation Computer Systems, 37, 141–147.

    Google Scholar 

  15. Min, A. W., Wang, R., Tsai, J., Ergin, M. A., & Tai, T. Y. C. (2012). Improving energy efficiency for mobile platforms by exploiting low-power sleep states. In Proceedings of the 9th Conference on Computing Frontiers, CF ’12 (pp. 133–142). New York, NY, USA: ACM.

    Google Scholar 

  16. Lee, R. B. (2012). Hardware-enhanced access control for cloud computing. In Proceedings of the 17th ACM Symposium on Access Control Models and Technologies, SACMAT ’12 (pp. 1–2). New York, NY, USA: ACM.

    Google Scholar 

  17. Guerout, T., Monteil, T., Costa, G. D., Calheiros, R. N., Buyya, R., & Alexandru, M. (2013). Energyaware simulation with DVFS. Simulation Modelling Practice and Theory, 39, 76–91.

    Google Scholar 

  18. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software Practice and Experience41(1), 23–50.

    Google Scholar 

  19. Rossi, F., Xavier, M., Monti, Y., & De Rose, C. (2015). On the impact of energy-efficient strategies in HPC clusters. In Proceedings International Conference on Parallel, Distributed and Network-Based Processing (PDP), 23rd Euromicro (pp. 17–21).

    Google Scholar 

  20. Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., et al. (2005). Live migration of virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design and Implementation, NSDI’05 (Vol. 2, pp. 273–286). Berkeley, CA, USA: USENIX Association.

    Google Scholar 

  21. Lee, S., Purohit, M., & Saha, B. (2013). Firewall placement in cloud data centers. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13 (pp. 52:1–52:2). New York, NY, USA: ACM.

    Google Scholar 

  22. Smid, H., Mast, P., Tromp, M., Winterboer, A., & Evers, V. (2011). Canary in a coal mine: Monitoring air quality and detecting environmental incidents by harvesting twitter. CHI ’11 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’11 (pp. 1855–1860). New York, NY, USA: ACM.

    Google Scholar 

  23. Alboaneen, D. A., Pranggono, B., & Tianfield, H. (2014). Energy-aware virtual machine consolidation for cloud data centers. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC ’14 (pp. 1010–1015). Washinton, DC, USA: IEEE Computer Society.

    Google Scholar 

  24. Ding, Y., Qin, X., Liu, L., & Wang, T. (2015). Energy efficient scheduling of virtual machines in cloud with deadline constraint. Future Generation Computer Systems, 50(C), 62–74.

    Google Scholar 

  25. Han, R., Guo, L., Ghanem, M. M., & Guo, Y. (2012). Lightweight resource scaling for cloud applications. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12 (pp. 644–651). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  26. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., & Chan, A. (2013). A framework for partitioning and execution of data stream applications in mobile cloud computing. SIGMETRICS Performance Evaluation Reviews, 40(4), 23–32.

    Google Scholar 

  27. Zeng, W., Zhao, Y., & Zeng, J. (2009). Cloud service and service selection algorithm research. In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC ’09 (pp. 1045–1048). New York, NY, USA: ACM.

    Google Scholar 

  28. Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud datacenters. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10 (pp. 826–831). Washington, DC, USA: IEEE Computer Socity.

    Google Scholar 

  29. Duy, T. V. T., Sato, Y., & Inoguchi, Y. (2010). Performance evaluation of a green scheduling algorithm for energy savings in cloud computing. In Proceedings IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW) (pp. 1–8).

    Google Scholar 

  30. Dong, Y., Zhou, L., Jin, Y., & Wen, Y. (2015). Improving energy efficiency for mobile media cloud via virtual machine consolidation. Mobile Network Applications, 20(3), 370–379.

    Google Scholar 

  31. Garg, S. K., Yeo, C. S., & Buyya, R. (2011). Green cloud framework for improving carbon efficiency of clouds. In Proceedings of the 17th International Conference on Parallel Processing—Volume Part I, Euro-Par’11 (pp. 491–502). Berlin, Heidelberg: Springer.

    Google Scholar 

  32. Pietri, I., Juve, G., Deelman, E., & Sakellariou, R. (2014). A performance model to estimate execution time of scientific workflows on the cloud. In Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, WORKS ’14 (pp. 11–19). Piscataway, NJ, USA: IEEE Press.

    Google Scholar 

  33. Khomonenko, A. D., & Gindin, S. I. (2014). Stochastic models for cloud computing performance evaluation. In Proceedings of the 10th Central and Eastern European Software Engineering Conference in Russia, CEE-SECR ’14 (pp. 20:1–20:6). New York, NY, USA: ACM.

    Google Scholar 

  34. Lakew, E. B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E. (2014). Towards faster response time models for vertical elasticity. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC ’14 (pp. 560–565). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  35. Sharma, U., Shenoy, P., & Towsley, D. F. (2012). Provisioning multi-tier cloud applications using statistical bounds on sojourn time. In Proceedings of the 9th International Conference on Autonomic Computing, ICAC ’12 (pp. 43–52). New York, NY, USA: ACM.

    Google Scholar 

  36. Niyato, D., Chaisiri, S., & Sung, L. B. (2009). Optimal power management for server farm to support green computing. In Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09 (pp. 84–91). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  37. Maccio, V., & Down, D. (2015). On optimal policies for energy-aware servers. Performance Evaluation, 90(C), 36–52.

    Google Scholar 

  38. Shen, D., Luo, J., Dong, F., Fei, X., Wang, W., Jin, G., et al. (2015). Stochastic modeling of dynamic right-sizing for energy-efficiency in cloud data centers. Future Generation Computer Systems, 48(C), 82–95.

    Google Scholar 

  39. Guzek, M., Kliazovich, D., Bouvry, P. (2013). A holistic model for resource representation in virtualized cloud computing data centers. In Proceedings of the 2013 IEEE International Conference on Cloud Computing Technology and Science—Volume 01, CLOUDCOM ’13 (pp. 590–598). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  40. Suleiman, B., & Venugopal, S. (2013). Modeling performance of elasticity rules for cloud-based applications. In Proceedings of the 2013 17th IEEE International Enterprise Distributed Object Computing Conference, EDOC ’13 (pp. 201–206). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  41. Felsch, D., Heiderich, M., Schulz, F., & Schwenk, J. (2015). How private is your private cloud?: Security analysis of cloud control interfaces. In Proceedings of the 2015 ACM Workshop on Cloud Computing Security Workshop, CCSW ’15 (pp. 5–16). New York, NY, USA: ACM.

    Google Scholar 

  42. Alvarruiz, F., de Alfonso, C., Caballer, M., & Hernandez, V. (2012). An energy manager for high performance computer clusters. In Proceedings IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA) (pp. 231–238).

    Google Scholar 

  43. Zhu, H., Liu, Y., Lu, K., & Wang, X. (2012). Self-adaptive management of the sleep depths of idle nodes in large scale systems to balance between energy consumption and response times. In Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), CLOUDCOM ’12 (pp. 633–639). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  44. Villegas, D., & Sadjadi, S. M. (2011). Mapping non-functional requirements to cloud applications. In SEKE (pp. 527–532). Knowledge Systems Institute Graduate School.

    Google Scholar 

  45. Sequeira, H., Carreira, P., Goldschmidt, T., & Vorst, P. (2014). Energy cloud: Real-time cloud-native energy management system to monitor and analyze energy consumption in multiple industrial sites. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC ’14 (pp. 529–534). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  46. Yu, H., Powell, N., Stembridge, D., Yuan, X. (2012). Cloud computing and security challenges. In Proceedings of the 50th Annual Southeast Regional Conference, ACM-SE ’12 (pp. 298–302). New York, NY, USA: ACM.

    Google Scholar 

  47. Gupta, A., Kale, L., Gioachin, F., March, V., Suen, C. H., Lee, B. S., et al. (2013). The who, what, why, and how of high performance computing in the cloud. In IEEE 5th International Conference on Proceedings Cloud Computing Technology and Science (CloudCom) (Vol. 1, pp. 306–314).

    Google Scholar 

  48. Lef‘evre, L., & Orgerie, A. C. (2010). Designing and evaluating an energy efficient cloud. Journal of Supercomputing, 51(3), 352–373.

    Google Scholar 

  49. Feller, E., Rilling, L., Morin, C., Lottiaux, R., & Leprince, D. (2010). Snooze: A scalable, fault-tolerant and distributed consolidation manager for large-scale clusters. In Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and Communications and International Conference on Cyber, Physical and Social Computing, GREENCOM-CPSCOM ’10 (pp. 125–132). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  50. Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., & Katz, R. H. (2010). Napsac: Design and implementation of a power-proportional web cluster. In Proceedings of the First ACM SIGCOMM Workshop on Green Networking, Green Networking ’10 (pp. 15–22). New York, NY, USA: ACM.

    Google Scholar 

  51. Kliazovich, D., Arzo, S. T., Granelli, F., Bouvry, P., & Khan, S. U. (2013). e-stab: Energy-efficient scheduling for cloud computing applications with traffic load balancing. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GREENCOM-ITHINGSCPSCOM’13 (pp. 7–13). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  52. Wang, X., Du, Z., & Chen, Y. (2012). An adaptive model-free resource and power management approach for multi-tier cloud environments. Journal of Systems and Software, 85(5), 1135–1146.

    Google Scholar 

  53. Santana, C., Leite, J. C. B., & Moss’e, D. (2010). Load forecasting applied to soft real-time web clusters. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10 (pp. 346–350). New York, NY, USA: ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Diniz Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossi, F.D., Calheiros, R.N., De Rose, C.A.F. (2017). A Terminology to Classify Artifacts for Cloud Infrastructure. In: Chaudhary, S., Somani, G., Buyya, R. (eds) Research Advances in Cloud Computing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5026-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5026-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5025-1

  • Online ISBN: 978-981-10-5026-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics