Skip to main content

Real-Time Human Depression Diagnosis System Using Brain Wave Analysis

  • Conference paper
  • First Online:
Advanced Multimedia and Ubiquitous Engineering (FutureTech 2017, MUE 2017)

Abstract

This study has the goal of developing a diagnosis system to detect human depression in real time to assist in the diagnosis of a doctor. The developed system may grasp the concentration and depression level of a patient using brainwave data acquired in real time. The depression detection index used in the system is the frontal brain asymmetry (FBA), which is based on the asymmetric phenomenon of depressed patients. In this study, an experiment was conducted with 40 depressed/normal subjects in order to verify the reliability of the developed system. The results proved that the system diagnosed the depression level in real time. It can be used to develop therapy programs for various nervous and mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung, Y.S., Cho, K.G., Um, K.H.: A framework for processing brain waves used in a brain-computer interface. J. Inf. Process. Syst. 82, 315–330 (2012)

    Article  Google Scholar 

  2. Sulaiman, N., Taib, M.N., Aris, S.A.M., Hamid, N.H.A., Lias, S., Murat, Z.H.: Stress features identification from EEG signals using EEG asymmetry and spectral centroids techniques. In: 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 417–421 (2010)

    Google Scholar 

  3. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1991)

    Article  Google Scholar 

  4. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 17849–17854 (2004)

    Article  Google Scholar 

  5. Zhao, Q., Zhang, L., Cichocki, A.: EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin. Sci. Bull. 54, 78–87 (2009)

    Article  Google Scholar 

  6. Woestenburg, J., Verbaten, M., Slangen, J.: The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biol. Psychol. 16, 127–147 (1983)

    Article  Google Scholar 

  7. Knott, V., Mahoney, C., Kennedy, S., Evans, K.: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. Neuroimaging 106, 123–140 (2001)

    Article  Google Scholar 

  8. Picard, R.W.: Affective computing. Tech. rep. no. 321, MIT Media Lab., Massachusetts, USA (1995)

    Google Scholar 

  9. Tao, J., Tan, T.: Affective computing: a review. In: International Conference on Affective Computing and Intelligent Interaction, pp. 981–995. Springer, Heidelberg (2005)

    Google Scholar 

  10. Ekman, P.: Facial expressions. In: Handbook of Cognition and Emotion, pp. 226–232. Wiley, Chichester (2005)

    Google Scholar 

  11. Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology Press, Philadelphia (2001)

    Google Scholar 

  12. Plutchik, R.: The nature of emotions human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89, 344–350 (2001)

    Article  Google Scholar 

  13. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980)

    Article  Google Scholar 

  14. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012)

    Article  Google Scholar 

  15. Frantzidis, C.A., Bratsas, C., Papadlis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans. Inf Technol. Biomed. 14, 589–597 (2010)

    Article  Google Scholar 

  16. Lee, D.H., Sim, K.B.: Development of emotion recognition model based on multi layer perceptron. J. Korean Inst. Intell. Syst. 16, 372–377 (2006)

    Article  Google Scholar 

  17. Cai, J., Liu, G., Hao, M.: The research on emotion recognition from ECG signal. In: International Conference on Information Technology and Computer Science (ITCS 2009), Kiev, Ukraine, pp. 497–500 (2009)

    Google Scholar 

  18. Christie, I.C., Friedman, B.H.: Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach. Int. J. Psychophysiol. 51, 143–153 (2004)

    Article  Google Scholar 

  19. Lee, J.H., Kim, K.H.: A study of biosignal analysis system for sensibility evaluation. J. Korea Soc. Comput. Inf. 15, 19–26 (2010)

    Google Scholar 

  20. Dobashi, N., Magatani, K.: Development of the EEG measurement method under exercising. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minnesota, USA, pp. 380–383 (2009)

    Google Scholar 

  21. Park, J., Woo, I., Park, S.: Application of EEG for multimodal human-machine interface. In: 12th International Conference on Control, Automation and Systems (ICCAS), pp. 1869–1873 (2012)

    Google Scholar 

  22. Tanaka, J., Kimura, M., Hosaka, N., Sawaji, H. Sakakura, K., Magatani, K.: Development of the EEG measurement technique under exercising. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, pp. 5971–5974 (2005)

    Google Scholar 

  23. Lorig, T.S., Herman, K.B.: EEG activity during administration of low-concentration odors. Bull. Psychon. Soc. 28, 405–408 (1990)

    Article  Google Scholar 

  24. Zigmond, A.S., Snaith, R.P.: The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67, 361–370 (1983)

    Article  Google Scholar 

  25. Beck, A.T., Steer, R.A., Carbin, M.G.: Psychometric properties of the beck depression inventory: twenty-five years of evaluation. Clin. Psychol. Rev. 8, 77–100 (1988)

    Article  Google Scholar 

  26. Choi, K.M., Jang, K.M., Jang, K.I., Um, U.H., Kim, M.S., Kim, D.W., Shin, D.K., Chae, J.H.: The effects of 3 weeks of rTMS treatment on P200 amplitude in patients with depression. Neurosci. Lett. 577, 22–27 (2014)

    Article  Google Scholar 

  27. Segrave, R.A., Cooper, N.R., Thomson, R.H., Croft, R.J., Sheppard, D.M., Fitzgerald, P.B.: Individualized alpha activity and frontal asymmetry in major depression. Clin. EEG Neurosci. 42, 45–52 (2011)

    Article  Google Scholar 

  28. Kline, J.P., Allen, S.: The failed repressor: EEG asymmetry as a moderator of the relation between defensiveness and depressive symptoms. Int. J. Psychophysiol. 68, 228–234 (2008)

    Article  Google Scholar 

  29. Valiulis, V., Gerulskis, G., Dapsys, K., Vistartailte, G., Siurkute, A., Maciulis, V.: Electrophysiological differences between high and low frequency rTMS protocols in depression treatment. Acta Neurobiol. Exp. 72, 283–295 (2012)

    Google Scholar 

  30. Micoulaud-Franchi, J.-A., Richien, R., Cemolacce, M., Loundou, A., Lancon, C., Vion-Dury, J.: Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J. Affect. Disord. 137, 156–160 (2012)

    Article  Google Scholar 

  31. Niemiec, A.J., Lithgow, B.J.: Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, pp. 7517–7520 (2006)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01059253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkyoo Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Shin, D., Nam, Y., Shin, D., Shin, D. (2017). Real-Time Human Depression Diagnosis System Using Brain Wave Analysis. In: Park, J., Chen, SC., Raymond Choo, KK. (eds) Advanced Multimedia and Ubiquitous Engineering. FutureTech MUE 2017 2017. Lecture Notes in Electrical Engineering, vol 448. Springer, Singapore. https://doi.org/10.1007/978-981-10-5041-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5041-1_67

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5040-4

  • Online ISBN: 978-981-10-5041-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics