Skip to main content

Uniform Random Number Generation and Secret Key Agreement for General Sources by Using Sparse Matrices

  • Chapter
  • First Online:
Mathematical Modelling for Next-Generation Cryptography

Part of the book series: Mathematics for Industry ((MFI,volume 29))

Abstract

In this paper, we investigate the problems of uniform random number generation, independent uniform random number generation, and secret key agreement, which provide the information theoretic security. We consider the strong uniformity and strong independence, where it has been unclear whether or not sparse matrices can be applied to these problems for general (correlated) sources with respect to these criteria. To prove the theorems, we first introduce the notion of the balanced-coloring property and the collision-resistance property. We next apply these properties to the problems. Since an ensemble of sparse matrices (with logarithmic column weight) over a finite field satisfies these properties, we can construct a code achieving the fundamental limits by using sparse matrices.

This paper is based on Proc. 2012 IEEE Inform. Theory Workshop, Lausanne, Switzerland, Sep. 3–7, 2012, pp. 612–616.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [24], it is called ‘strong hash property’.

  2. 2.

    In [23, Lemma 1][20, Lemma 4], this lemma is shown under a weaker condition [23, Eq. (H3)][20, Eq. (H3’)].

  3. 3.

    See [23, Eq. (52)].

  4. 4.

    A square part of the matrix is identity.

  5. 5.

    It should be noted that the roles of A and B are the reverse of those in [26].

References

  1. E. Abbe, Polarization and randomness extraction, in Proceedings of 2011 IEEE International Symposium Information Theory (St. Petersburg, Russia, 31 July–5 Aug 2011), pp. 184–188

    Google Scholar 

  2. R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography — Part I: secret sharing. IEEE Trans. Inform. Theory IT–39(4), 1121–1132 (1993)

    Article  MATH  Google Scholar 

  3. R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography — Part II: CR capacity. IEEE Trans. Inform. Theory IT–44(1), 225–240 (1998)

    Article  MATH  Google Scholar 

  4. C.H. Bennett, G. Brassard, C. Crepeau, U. Maurer, Generalized privacy amplification. IEEE Trans. Inform. Theory IT–41(6), 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bloch, Channel intrinsic randomness, in Proceedings of 2010 IEEE International Symposium Information Theory (Austin, USA, 13–18 June 2010), pp. 2607–2611

    Google Scholar 

  6. M. Bloch, J.N. Laneman, Strong secrecy from channel resolvability. IEEE Trans. Inform Theory IT–59(12), 8077–8098 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Cachin, U.M. Maurer, Linking information reconciliation and privacy amplification. J. Cryptol. 10, 97–110 (1997)

    Article  MATH  Google Scholar 

  8. T.M. Cover, A proof of the data compression theorem of Slepian and Wolf for ergodic sources. IEEE Trans. Inform. Theory IT–21(2), 226–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Hoboken, 2006)

    MATH  Google Scholar 

  10. I. Csiszár, Linear codes for sources and source networks: error exponents, universal coding. IEEE Trans. Inform. Theory IT–28(4), 585–592 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Csiszár, Almost independence and secrecy capacity. Probl. Inform. Transm. 32(1), 40–47 (1996)

    MATH  Google Scholar 

  12. I. Csiszár, J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  13. J.L. Carter, M.N. Wegman, Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. T.S. Han, S. Verdú, Apploximation theory of output statistics. IEEE Trans. Inform. Theory IT–39(3), 752–772 (1993)

    Article  MATH  Google Scholar 

  15. T.S. Han, Information-Spectrum Methods in Information Theory (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  16. R. Impagliazzo, D. Zuckerman, How to recycle random bits, in 30th IEEE Symposium of Fundations of Computer Science (30 Oct–1 Nov 1989), pp. 248–253

    Google Scholar 

  17. H. Koga, Coding theorem on the threshold scheme for a general source. IEEE Trans. Inform. Theory IT–52(4), 2658–2677 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. U.M. Maurer, Secret key agreement by public discussion from common information. IEEE Trans. Inform. Theory IT–39(3), 733–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Muramatsu, Secret key agreement from correlated source outputs using low density parity check matrices. IEICE Trans. Fundam. E89–A(7), 2036–2046 (2006)

    Article  Google Scholar 

  20. J. Muramatsu, Channel coding and lossy source coding using a generator of constrained random numbers. IEEE Trans. Inform. Theory IT–60(5), 2667–2686 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Muramatsu, Variable-length lossy source cod using a constrained-random-number generator. IEEE Trans. Inform. Theory IT–61(6), 3574–3592 (2014)

    MATH  Google Scholar 

  22. J. Muramatsu, T. Koga, T. Mukouchi, On the problem of generating mutually independent random sequences. IEICE Trans. Fundam. E86–A(5), 1275–1284 (2003)

    Google Scholar 

  23. J. Muramatsu, S. Miyake, Hash property and coding theorems for sparse matrices and maximal-likelihood coding. IEEE Trans. Inform. Theory IT–56(5), 2143–2167 (2010). Corrections: IT-56(9), 4762 (2010); IT-59(10), 6952–6953 (2013)

    Google Scholar 

  24. J. Muramatsu, S. Miyake, Construction of Slepian-Wolf source code and broadcast channel code based on hash property (2010), arXiv:1006.5271 [CS.IT]

  25. J. Muramatsu, S. Miyake, Construction of strongly secure wiretap channel code based on hash property, in Proceedings 2011 IEEE International Symposium on Information Theory (St. Petersburg, Russia, 31 July–5 Aug 2011), pp. 612–616

    Google Scholar 

  26. J. Muramatsu, S. Miyake, Construction of codes for wiretap channel and secret key agreement from correlated source outputs based on hash property. IEEE Trans. Inform. Theory IT–58(2), 671–692 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Muramatsu, S. Miyake, Uniform random number generation by using sparse matrix, Proceedings of IEEE Information Theory Workshop (Lausanne, Switzerland, 3–7 Sept 2012), pp. 612–616

    Google Scholar 

  28. J. Muramatsu, S. Miyake, Construction of a channel code from an arbitrary source code with decoder side information, in Proceedings of International Symposium Information Theory and Its Applications (Monterey, CA, USA, 30 Oct–2 Nov, 2016), pp. 176–180

    Google Scholar 

  29. R. Renner, S. Wolf, Simple and tight bounds for information reconciliation and privacy amplification. Lect. Notes Comput. Sci. 3788, 199–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Vembu, S. Verdú, Generating random bits from an arbitrary source. IEEE Trans. Inform. Theory IT–41(5), 1322–1332 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Z. Zhang, Estimating mutual information via Kolmogorov distance. IEEE Trans. Inform. Theory IT–53(9), 3280–3283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Muramatsu .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Lemmas 1.1 and 1.2

In the following proofs, we use the following lemma.

Lemma 6.5

([31]) Let p and q be probability distributions on the same set \(\mathscr {U}\). Then

$$\begin{aligned} |H(p)-H(q)| \le d(p,q)\log (|\mathscr {U}|-1)+h(d(p,q)), \end{aligned}$$

where \(H(\mu )\equiv \sum _u \mu (u)\log (1/\mu (u))\) and \(h(\theta )\equiv -\theta \log \theta -[1-\theta ]\log (1-\theta )\).

First, we prove Lemma 1.1. From the fact that \(H(p_{\overline{M}_n})=\log |\mathscr {M}_n|\), we have

$$\begin{aligned} D(\mu _{M_n}\Vert p_{\overline{M}_n})&=\sum _{\mathbf {m}\in \mathscr {M}_n}\mu _{M_n}(\mathbf {m})\log \frac{\mu _{M_n}(\mathbf {m})}{p_{\overline{M}_n}(\mathbf {m})} \nonumber \\&= \log |\mathscr {M}_n|-H(\mu _{M_n}) \nonumber \\&= \left| {H(p_{\overline{M}_n})-H(\mu _{M_n})}\right| \nonumber \\&\le d(\mu _{M_n},p_{\overline{M}_n})\log |\mathscr {M}_n|+ h(d(\mu _{M_n},p_{\overline{M}_n})) \nonumber \\&= o(1), \end{aligned}$$
(39)

where the inequality comes from Lemma 6.5.\(\qquad \square \)

Next, we prove Lemma 1.2. The inequality (5) is shown immediately from (1) and Lemma 1.1. From Lemma 6.5, we have

$$\begin{aligned}&\left| {H(p_{\overline{M}_n})-H(\mu _{M_n})}\right| \nonumber \\&\le d(\mu _{M_n},p_{\overline{M}_n})\log |\mathscr {M}_n| +h(d(\mu _{M_n},p_{\overline{M}_n})) \nonumber \\&\le d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})\log |\mathscr {M}_n| + h(d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})), \end{aligned}$$
(40)

where the second inequality comes from (1). Furthermore, from Lemma 6.5, we have

$$\begin{aligned}&\sum _{\mathbf {z}}\mu _{Z^n}(\mathbf {z})\left| {H(p_{\overline{M}_n})-H(\mu _{M_n|Z^n}(\cdot |\mathbf {z}))}\right| \nonumber \\&\le \sum _{\mathbf {z}} \mu _{Z^n}(\mathbf {z})d(p_{\overline{M}_n},\mu _{M_n|Z^n}(\cdot |\mathbf {z}))\log |\mathscr {M}_n| + \sum _{\mathbf {z}}\mu _{Z^n}(\mathbf {z}) h(d(p_{\overline{M}_n},\mu _{M_n|Z^n}(\cdot ,\mathbf {z}))) \nonumber \\&\le d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})\log |\mathscr {M}_n| + h(d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})), \end{aligned}$$
(41)

where the second inequality comes from the convexity of h. Then we have (6) as

$$\begin{aligned} I(M_n;Z^n)&=\sum _{\mathbf {z}}\mu _{Z^n}(\mathbf {z})\left[ {H(\mu _{M_n})-H(\mu _{M_n|Z^n}(\cdot |\mathbf {z}))}\right] \nonumber \\&\le \sum _{\mathbf {z}}\mu _{Z^n}(\mathbf {z})\left| {H(\mu _{M_n})-H(p_{\overline{M}_n})}\right| + \sum _{\mathbf {z}}\mu _{Z^n}(\mathbf {z})\left| {H(p_{\overline{M}_n})-H(\mu _{M_n|Z^n}(\cdot |\mathbf {z}))}\right| \nonumber \\&\le 2d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})\log |\mathscr {M}_n| + 2h(d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})) \nonumber \\&\le o(1), \end{aligned}$$
(42)

where the second inequality comes from (40) and (41).\(\qquad \square \)

Appendix 2: Proof of Lemma 6.1

When \(\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})\ne 0\), we have

$$\begin{aligned}&E_{\mathsf {A}}\left[ { \sum _{\mathbf {m}} \left| { \frac{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})\cap \mathscr {C}_{\mathsf {A}}(\mathbf {m})|\mathbf {z})}{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})} -\frac{1}{|\mathrm {Im}\mathscr {A}_n|} }\right| }\right] \nonumber \\&\le \sqrt{ \alpha _{\mathsf {A}}-1 +\frac{[\beta _{\mathsf {A}}+1]|\mathrm {Im}\mathscr {A}_n|\max _{\mathbf {x}\in \underline{\mathscr {T}}_{X|Z}(\mathbf {z})}\mu _{X^n|Z^n}(\mathbf {x}|\mathbf {z})}{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})} } \nonumber \\&\le \frac{\sqrt{ \alpha _{\mathsf {A}}-1 +[\beta _{\mathsf {A}}+1]|\mathrm {Im}\mathscr {A}_n|2^{-n[\underline{H}(\mathbf {X}|\mathbf {Z})-\zeta ]} }}{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})}, \end{aligned}$$
(43)

where the first inequality comes from Lemma 2.2 and the second inequality comes from the definition of \(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})\) and the fact that \(\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})\le 1\). Then we have

$$\begin{aligned}&E_{\mathsf {A}}\left[ { \sum _{\mathbf {m},\mathbf {z}} \left| { \mu _{X^nZ^n}(\mathscr {C}_A(\mathbf {m}),\mathbf {z}) - \frac{\mu _{Z^n}(\mathbf {z})}{|\mathrm {Im}\mathscr {A}_n|} }\right| }\right] \nonumber \\&\le E_{\mathsf {A}}\left[ { \sum _{\mathbf {m},\mathbf {z}} \left| { \mu _{X^nZ^n}(\mathscr {C}_{\mathsf {A}}(\mathbf {m})\cap \underline{\mathscr {T}}_{X|Z}(\mathbf {z}),\mathbf {z}) - \frac{\mu _{X^nZ^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z}),\mathbf {z})}{|\mathrm {Im}\mathscr {A}_n|} }\right| }\right] \nonumber \\&\quad + E_{\mathsf {A}}\left[ { \sum _{\mathbf {m},\mathbf {z}} \mu _{X^nZ^n}(\mathscr {C}_{\mathsf {A}}(\mathbf {m})\cap [\underline{\mathscr {T}}_{X|Z}(\mathbf {z})]^c,\mathbf {z}) }\right] + E_{\mathsf {A}}\left[ { \sum _{\mathbf {m},\mathbf {z}} \frac{\mu _{X^nZ^n}([\underline{\mathscr {T}}_{X|Z}(\mathbf {z})]^c,\mathbf {z})}{|\mathrm {Im}\mathscr {A}_n|} }\right] \nonumber \\&= \!\!\!\!\!\!\!\!\! \sum _{\begin{array}{c} \mathbf {z}:\\ \mu _Z(\mathbf {z})\ne 0 \\ \mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})\ne 0 \end{array}} \!\!\!\!\!\!\!\!\! \mu _{X^nZ^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z}),\mathbf {z}) E_{\mathsf {A}}\left[ { \sum _{\mathbf {m}} \left| { \frac{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})\cap \mathscr {C}_{\mathsf {A}}(\mathbf {m})|\mathbf {z})}{\mu _{X^n|Z^n}(\underline{\mathscr {T}}_{X|Z}(\mathbf {z})|\mathbf {z})} -\frac{1}{|\mathrm {Im}\mathscr {A}_n|} }\right| }\right] \nonumber \\&\quad + 2 \sum _{\mathbf {z}} \mu _{X^nZ^n}([\underline{\mathscr {T}}_{X|Z}(\mathbf {z})]^c,\mathbf {z}) \nonumber \\&\le \sqrt{ \alpha _{\mathsf {A}}-1 +[\beta _{\mathsf {A}}+1]|\mathrm {Im}\mathscr {A}_n|2^{-n[\underline{H}(\mathbf {X}|\mathbf {Z})-\zeta ]} } +2\mu _{X^nZ^n}([\underline{\mathscr {T}}_{X|Z}]^c), \end{aligned}$$
(44)

which concludes the lemma.\(\qquad \square \)

Appendix 3: Proof of Lemma 6.2

If \(g_B(B\mathbf {x}|\mathbf {y})\ne \mathbf {x}\), there is \(\mathbf {x}'\in \mathscr {C}_B(B\mathbf {x})\) such that \(\mathbf {x}'\ne \mathbf {x}\) and

$$\begin{aligned} \mu _{X^n|Y^n}(\mathbf {x}'|\mathbf {y})&\ge \mu _{X^n|Y^n}(\mathbf {x}|\mathbf {y}) \nonumber \\&\ge 2^{-n[\overline{H}(\mathbf {X}|\mathbf {Y})+\zeta ]}, \end{aligned}$$
(45)

where the second inequality comes from the definition of \(\overline{\mathscr {T}}_{X|Y}\). This implies that \([\overline{\mathscr {T}}_{X|Y}(\mathbf {y})\setminus \{\mathbf {x}\}]\cap \mathscr {C}_B(B\mathbf {x})\ne \emptyset \). Then we have

$$\begin{aligned} p_{\mathsf {B},n}\left( {\left\{ { B: g_B(B\mathbf {x}|\mathbf {y})\ne \mathbf {x} }\right\} }\right)&\le p_{\mathsf {B},n}\left( {\left\{ { B: \left[ {\overline{\mathscr {T}}_{X|Y}(\mathbf {y})\setminus \{\mathbf {x}\}}\right] \cap \mathscr {C}_B(B\mathbf {x})\ne \emptyset }\right\} }\right) \nonumber \\&\le \frac{2^{n[\overline{H}(\mathbf {X}|\mathbf {Y})+\zeta ]}\alpha _{\mathsf {B}}}{|\mathrm {Im}\mathscr {B}_n|} +\beta _{\mathsf {B}}, \end{aligned}$$
(46)

where the second inequality comes from Lemma 2.3 and the fact that \(|\overline{\mathscr {T}}_{X|Y}(\mathbf {y})|\le 2^{n[\overline{H}(\mathbf {X}|\mathbf {Y})+\zeta ]}\). We have

$$\begin{aligned}&E_{\mathsf {B}}\left[ { \sum _{\mathbf {x},\mathbf {y}}\mu _{X^nY^n}(\mathbf {x},\mathbf {y}) \chi (g_{\mathsf {B}}(\mathsf {B}\mathbf {x}|\mathbf {y})\ne \mathbf {x}) }\right] \nonumber \\*&\le \sum _{(\mathbf {x},\mathbf {y})\in \overline{\mathscr {T}}_{X|Y}}\mu _{X^nY^n}(\mathbf {x},\mathbf {y}) p_{\mathsf {B}}\left( {\left\{ { A: g_B(B\mathbf {x}|\mathbf {y})\ne \mathbf {x} }\right\} }\right) +\sum _{(\mathbf {x},\mathbf {y})\in [\overline{\mathscr {T}}_{X|Y}]^c}\mu _{X^nY^n}(\mathbf {x},\mathbf {y}) \nonumber \\&\le \frac{2^{n[\overline{H}(\mathbf {X}|\mathbf {Y})+\zeta ]}\alpha _{\mathsf {B}}}{|\mathrm {Im}\mathscr {B}_n|} +\beta _{\mathsf {B}}+\mu _{X^nY^n}([\overline{\mathscr {T}}_{X|Y}]^c), \end{aligned}$$
(47)

which concludes the lemma.\(\qquad \square \)

Appendix 4: Proof of Lemma 6.4

Let \(\underline{\mathscr {T}}'\) and \(\underline{\mathscr {T}}'(\mathbf {z})\) be defined as:

$$\begin{aligned} \underline{\mathscr {T}}'&\equiv \left\{ { (\mathbf {x},\mathbf {z}): \frac{1}{n}\log \frac{1}{\mu _{X^n|Z^n}(\mathbf {x}|\mathbf {z})}\ge R-\zeta }\right\} \\ \underline{\mathscr {T}}'(\mathbf {z})&\equiv \left\{ { \mathbf {x}: (\mathbf {x},\mathbf {z})\in \underline{\mathscr {T}}' }\right\} . \end{aligned}$$

Since \(\varphi _n(\mathbf {x})\in \varphi _n([\underline{\mathscr {T}}'(\mathbf {z})]^c)\) and \(\mathbf {x}\in \varphi _n^{-1}(\varphi _n(\mathbf {x}))\) for all \(\mathbf {x}\in [\underline{\mathscr {T}}'(\mathbf {z})]^c\), we have

$$\begin{aligned} \sum _{\mathbf {z}} \sum _{\mathbf {m}\in \varphi _n([\underline{\mathscr {T}}'(\mathbf {z})]^c)} \sum _{\mathbf {x}\in \varphi _n^{-1}(\mathbf {m})} \mu _{X^nZ^n}(\mathbf {x},\mathbf {z})&\ge \sum _{\mathbf {z}} \sum _{\mathbf {x}\in [\underline{\mathscr {T}}'(\mathbf {z})]^c} \mu _{X^nZ^n}(\mathbf {x},\mathbf {z}) \nonumber \\&= \mu _{X^nZ^n}(\underline{\mathscr {T}}'^c). \end{aligned}$$
(48)

On the other hand, we have

$$\begin{aligned} \sum _{\mathbf {z}} \sum _{\mathbf {m}\in \varphi _n([\underline{\mathscr {T}}'(\mathbf {z})]^c)} \frac{\mu _{Z^n}(\mathbf {z})}{|\mathscr {M}_n|}&= \sum _{\mathbf {z}} \frac{\left| {\varphi _n([\underline{\mathscr {T}}'(\mathbf {z})]^c)}\right| \mu _{Z^n}(\mathbf {z})}{|\mathscr {M}_n|} \nonumber \\&\le \sum _{\mathbf {z}} \frac{|[\underline{\mathscr {T}}'(\mathbf {z})]^c|\mu _{Z^n}(\mathbf {z})}{|\mathscr {M}_n|} \nonumber \\&\le 2^{-n\zeta }, \end{aligned}$$
(49)

where the last inequality comes from the fact that \(|\mathscr {M}_n|=2^{nR}\) and \(|[\underline{\mathscr {T}}'(\mathbf {z})]^c|\le 2^{n[R-\zeta ]}\). From (48) and (49), we have

$$\begin{aligned} d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})&= \frac{1}{2} \sum _{\mathbf {m},\mathbf {z}} \left| { \sum _{\mathbf {x}\in \varphi ^{-1}(\mathbf {m})} \mu _{X^nZ^n}(\mathbf {x},\mathbf {z}) -\frac{\mu _{Z^n}(\mathbf {z})}{|\mathscr {M}_n|} }\right| \nonumber \\&\ge \frac{1}{2} \sum _{\mathbf {z}} \sum _{\mathbf {m}\in \varphi _n([\underline{\mathscr {T}}'(\mathbf {z})]^c)} \left[ { \sum _{\mathbf {x}\in \varphi _n^{-1}(\mathbf {m})} \mu _{X^nZ^n}(\mathbf {x},\mathbf {z}) -\frac{\mu _{Z^n}(\mathbf {z})}{|\mathscr {M}_n|} }\right] \nonumber \\&\ge \frac{1}{2}\left[ {\mu _{X^nZ^n}(\underline{\mathscr {T}}'^c)-2^{-n\zeta }}\right] . \end{aligned}$$
(50)

Then we have the fact that

$$\begin{aligned} P\left( {\frac{1}{n}\log \frac{1}{\mu _{X^n|Z^n}(X^n|Z^n)}<R-\zeta }\right)&= \mu _{X^nZ^n}(\underline{\mathscr {T}}'^c) \nonumber \\&\le 2d(\mu _{M_nZ^n},p_{\overline{M}_n}\times \mu _{Z^n})+2^{-n\zeta } \end{aligned}$$
(51)

and

$$ \lim _{n\rightarrow \infty } P\left( {\frac{1}{n}\log \frac{1}{\mu _{X^n|Z^n}(X^n|Z^n)}<R-\zeta }\right) =0 $$

by letting \(n\rightarrow \infty \). From the definition of \(\underline{H}(\mathbf {X}|\mathbf {Z})\), we have

$$ R-\zeta \le \underline{H}(\mathbf {X}|\mathbf {Z}), $$

which concludes the lemma by letting \(\zeta \rightarrow 0\).\(\qquad \square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Muramatsu, J., Miyake, S. (2018). Uniform Random Number Generation and Secret Key Agreement for General Sources by Using Sparse Matrices. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto, K., Duong, D. (eds) Mathematical Modelling for Next-Generation Cryptography. Mathematics for Industry, vol 29. Springer, Singapore. https://doi.org/10.1007/978-981-10-5065-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5065-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5064-0

  • Online ISBN: 978-981-10-5065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics