Skip to main content

A Novel Time-Frequency Analysis in Nonstationary Signals Based Multiscale Radial Basis Functions and Forward Orthogonal Regression

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

  • 2025 Accesses

Abstract

For time-frequency analysis of nonstationary signals, an adaptive and efficient time-varying autoregressive (TVAR) modeling method based on the multiscale radial basis function (MRBF) network and forward orthogonal regression (FOR) algorithm is investigated in this paper. Specifically, time-varying coefficients in the TVAR model is firstly approximated by the MRBF which has a better performance of tracking the time-varying parameters in nonstationary signals. Thus, the time-varying modeling problem is simplified to the selection of optimal centers and scales of MRBF, which a modified particle swarm optimization (MPSO) method aided by a FOR algorithm are resolved. Secondly, recursive least squares (RLS), Legendre polynomials expansion method and single scale radial basis function approach (SSRBF) are used to compare with the proposed method to evaluate the performance. Finally, the experimental results indicate that the proposed approach outperforms competing techniques in terms of mean absolute error and root mean squared error, and show the effectiveness of the proposed method for extracting the nonstationary signals. abstract environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, K., et al.: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed. Sig. Process. Control 13, 15–22 (2014)

    Article  Google Scholar 

  2. Li, Y., Luo, M.L., Li, K.: A multiwavelet-based time-varying model identification approach for time-frequency analysis of EEG signals. Neurocomputing 193, 106–114 (2016)

    Article  Google Scholar 

  3. Boashash, B., Mesbah, M., Golditz, P.: Time-Frequency Detection of EEG Abnormalities, pp. 663–669. Elsevier, Amsterdam (2013). Chap. 15

    Google Scholar 

  4. Boashash, B., Boubchir, L., Azem, G.: A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals. Eurasip J. Adv. Sig. Process. 1, 1–12 (2012)

    Google Scholar 

  5. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13, 703–710 (2009)

    Article  Google Scholar 

  6. Cohen, L.: Time-frequency analysis: theory and applications. J. Acoust. Soc. Am. 134, 4002–4002 (2013)

    Article  MATH  Google Scholar 

  7. Li, Y., et al.: High-resolution time-frequency analysis of EEG signals using multiscale radial basis function. Neurocomputing 195, 96–103 (2016)

    Article  Google Scholar 

  8. Li, Y., et al.: Time-varying linear and nonlinear parametric model for Granger causality analysis. Phys. Rev. E 85, 041906 (2012)

    Article  Google Scholar 

  9. Chon, K.H., et al.: Multiple time-varying dynamic analysis using multiple sets of basis functions. IEEE Trans. Biomed. Eng. 52, 956–960 (2005)

    Article  Google Scholar 

  10. Guo, L., et al.: Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38, 10425–10436 (2011)

    Article  Google Scholar 

  11. Lee, J., Chon, K.H.: Time-varying autoregressive model-based multiple modes particle filtering algorithm for respiratory rate extraction from pulse oximeter. IEEE Trans. Biomed. Eng. 58, 790–794 (2011)

    Article  Google Scholar 

  12. Wang, G.F., et al.: Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum. Mech. Syst. Sig. Process. 22, 934–947 (2008)

    Article  Google Scholar 

  13. Billings, S.A., Wei, H.L., Balikhin, M.A.: Generalized multiscale radial basis function networks. Neural Netw. 20, 1081–1094 (2007)

    Article  MATH  Google Scholar 

  14. Chang, L.C., Chang, F.J., Wang, Y.P.: Auto-configuring radial basis function networks for chaotic time series and flood forecasting. Hydrol. Process. 23, 2450–2459 (2009)

    Article  Google Scholar 

  15. Xie, J.C., Wang, T.P.: A method of flood forecasting of chaotic radial basis function neural network. In: International Workshop on Intelligent Systems and Application, pp. 1–5 (2010)

    Google Scholar 

  16. Wei, H.L., Billings, S.A.: Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks. Adv. Space Res. 40, 1863–1870 (2007)

    Article  Google Scholar 

  17. Chen, S., et al.: Non-linear system identification using particle swarm optimisation tuned radial basis function models. Int. J. Bio Inspired Comput. 1, 246–258 (2009)

    Article  Google Scholar 

  18. Bao, Y., Hu, Z., Xiong, T.: A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing 117, 98–106 (2014)

    Article  Google Scholar 

  19. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004)

    Article  Google Scholar 

  20. Chauhan, P., Deep, K., Pant, M.: Novel inertia weight strategies for particles swarm optimization. Memetic Comput. 5, 229–251 (2013)

    Article  Google Scholar 

  21. Farid, M., Yakoub, B.: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008)

    Article  Google Scholar 

  22. Billings, S.A.: Nolinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-temporal Domains, 1st edn. John Wiley and Sons, Chichester (2013)

    Book  MATH  Google Scholar 

  23. Chen, S.H., Harris, C.J., Sharkey, P.M.: Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B 34, 898–911 (2004)

    Article  Google Scholar 

  24. Wei, H.L., Billings, S.A.: Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets. Int. J. Model. Ident. Control 9, 215–224 (2010)

    Article  Google Scholar 

  25. Zhang, Z.G., Hung, Y., Chan, S.C.: Local polynomial modeling of time-varying autoregressive models with application to time-frequency analysis of event-related EEG. IEEE Trans. Biomed. Eng. 58, 557–566 (2011)

    Article  Google Scholar 

  26. Wei, H.L., Billings, S.A., Liu, J.: Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets. Int. J. Model. 9, 215–224 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, X., Wang, L., Li, Y. (2017). A Novel Time-Frequency Analysis in Nonstationary Signals Based Multiscale Radial Basis Functions and Forward Orthogonal Regression. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics