Skip to main content

Experiment on Self-adaptive Impedance Control of Two-Finger Gripper with Tactile Sensing

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

Abstract

The end effector is crucial for handling and manipulating objects with a space manipulator during on-orbit service. In this paper, a new self-adaptive impedance controller for an underactuated two-finger gripper is proposed based on tactile sensing. The impedance controller makes the finger appear as mechanical impedance when it touches an unknown object. In particular, the impedance stiffness parameter can be adjusted using the stiffness recognition of tactile sensing in real time. Thus, there is no switching mode between motion in free space and the capture process, and the gripper can self-adapt the capture force to different stiffness of objects. Finally, a terrestrial experimental setup is established to validate the efficiency of the proposed controller for the gripper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shigeo, H., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theor. 13(3), 351–359 (1978)

    Article  Google Scholar 

  2. Belzile, B., Birglen, L.: A compliant self-adaptive gripper with proprioceptive haptic feedback. Auton. Robots 36, 79–91 (2014)

    Article  Google Scholar 

  3. Ciocarlie, M., Allen, P.: A constrained optimization framework for compliant underactuated grasping. Mech. Sci. 2, 17–26 (2011)

    Article  Google Scholar 

  4. Reisinger, T.: Hybrid position/force-control for implementing skill primitives. In: ACSE 05 Conference, CICC, Cairo, Egypt, pp. 191–196 (2005)

    Google Scholar 

  5. Hogan, N.: Impedance control: an approach to manipulation: Part III-applications. J. Dyn. Syst. Meas. Contr. 107, 17–24 (1985)

    Article  MATH  Google Scholar 

  6. Xiong, R., Sun, Y.C., Zhu, Q.G., Wu, J., Chu, J.: Impedance control and its effects on a humanoid robot playing table tennis. Int. J. Adv. Rob. Syst. 9, 1–11 (2012)

    Article  Google Scholar 

  7. Hun, L., Setiawan, S.A., Takanishi, A.: Position-based impedance control of a biped humanoid robot. Adv. Rob. 18, 415–435 (2004)

    Article  Google Scholar 

  8. Ott, C.: Cartesian impedance control of redundant and flexible-joint robots. Adv. Rob. 49, 4–37 (2008)

    Google Scholar 

  9. Liu, H., Liu, Y.C., Jin, M., Sun, K., Huang, J.B.: An experimental study on cartesian impedance control for a joint torque-based manipulator. Adv. Rob. 22, 1155–1180 (2007)

    Article  Google Scholar 

  10. Hirzinger, G., Brunner, B., Dietrich, J.: Sensor-based space robotics-ROTEX and its telerobotics features. IEEE Trans. Rob. Autom. 9, 649–662 (1993)

    Article  Google Scholar 

  11. Abielmona, R., Petriu, E.M., Harb, M., Wesolkowski, S.: Mission-driven robotic intelligent sensor agents for territorial security. IEEE Comput. Intell. Mag. 6, 55–67 (2011)

    Article  Google Scholar 

  12. Chen, G.C., Juang, C.F.: Object detection using color entropies and a fuzzy classifier. IEEE Comput. Intell. Mag. 8, 33–45 (2013)

    Article  Google Scholar 

  13. Guo, D., Sun, F.C., Liu, C.F.: A system of robotic grasping with experience acquisition. Sci. China Inf. Sci. 57, 120202 (2014)

    Google Scholar 

  14. Kim, M.J., Choi, M., Kim, Y.B., Liu, F., Moon, H., Koo, J.C., Choi, H.R.: Exploration of unknown object by active touch of robot hand. Int. J. Control Autom. Syst. 12(2), 406–414 (2014)

    Article  Google Scholar 

  15. Fernandez, R., Payo, I., Vazquez, A.S., Becedas, J.: Micro-vibration-based slip detection in tactile force sensora. Sensors 14, 709–730 (2014)

    Article  Google Scholar 

  16. Chitta, S., Piccoli, M., Sturm, J.: Tactile object class and internal state recognition for mobile manipulation. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, pp. 2342–2348 (2010)

    Google Scholar 

  17. http://robotiq.com/en/products/industrial-robot-gripper/

  18. Chu, Z.Y., Zhou, M., Hu, J., Lu, S.: Gripper mode analysis of an active-passive composited driving self-adaptive mechanism. Acta Aeronautics et Astronuatica Sinica. 35(12), 3451–3458 (2014)

    Google Scholar 

  19. Wang, J.G., Gosselin, C.M., Cheng, L.: Modeling and simulation of robotic systems with closed kinematic chains using the virtual spring approach. Multibody Syst. Dyn. 7, 145–170 (2002)

    Article  MATH  Google Scholar 

  20. Khan, W.A., Tang, C.P., Krovi, V.N.: Modular and distributed forward dynamics simulation of constrained mechanical systems-a comparative study. Mech. Mach. Theor. 42, 558–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27, 1067–1079 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Chu, Z., Ma, Y., Zhou, M., Sun, F. (2017). Experiment on Self-adaptive Impedance Control of Two-Finger Gripper with Tactile Sensing. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics