Skip to main content

Ambulanceye – The Future of Medical Rescues

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 710))

Included in the following conference series:

  • 2083 Accesses

Abstract

This study advances the concept of “ambulanceye” as a conjecture on the future of medical rescues, assuming that the advanced driver assistant systems (ADAS) can be equipped in ambulances and contribute to driving security through timely danger caution. Recognition of the danger is based on detecting and tracking of eigenobjects (defined as the potential dangerous objects in the video). Simulated performances shown that ambulanceye can overcome ocular restriction resulted from weathering extremes and other accidents that can cause sights blurred. Nevertheless, considerable uncertainties still remain in real-time analyses and characterization of eigenobjects trace. A next research priority is to develop an ADAS system for efficient eigenobjects recognition and tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23(3), 559–568 (2004)

    Article  Google Scholar 

  2. Philip Chen, C.L., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275(11), 314–347 (2014)

    Article  Google Scholar 

  3. Marx, V.: The big challenges of big data. Nat. 498(7453), 255–260 (2013)

    Article  Google Scholar 

  4. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Prog. 156(1), 1–52 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Vazhkudai, S., Schopf, J.M.: Using regression techniques to predict large data transfers. Int. J. High Perform. Comput. Appl. 17(3), 249–268 (2003)

    Article  Google Scholar 

  6. Waldrop, M.: Big data: wikiomics. Nat. 455(7209), 22–25 (2008)

    Article  Google Scholar 

  7. Kim, G.H., Trimi, S., Chung, J.H.: Big-data applications in the government sector. Commun. ACM 57(3), 78–85 (2014)

    Article  Google Scholar 

  8. Mervis, J.: Agencies rally to tackle big data. Sci. 336(6077), 22–22 (2012)

    Article  Google Scholar 

  9. Wigan, M.R., Clarke, R.: Big data’s big unintended consequences. Comput. 46(6), 46–53 (2013)

    Article  Google Scholar 

  10. Talia, D.: Clouds for scalable big data analytics. Comput. 46(5), 98–101 (2013)

    Article  Google Scholar 

  11. Westgate, B.S., Woodard, D.B., Matteson, D.S., Henderson, S.G.: Large-network travel time distribution estimation for ambulances. Eur. J. Oper. Res. 252(1), 322–333 (2016)

    Article  MATH  Google Scholar 

  12. Shin, D.M., Yoon, B.G., Han, Y.T.: Analysis of ambulance traffic accident during driving. vol. 30(1), pp. 130–137 (2016)

    Google Scholar 

  13. Shin, D.M., Kim, S.Y., Han, Y.T.: A study on the comparative analysis of fire-fighting ambulances about the aspects of safety and efficiency using the question investigation. vol. 29(2), pp. 44–53 (2015)

    Google Scholar 

  14. Ambrose, J.: Emergency response driving education within UK ambulance services. J. Paramedic Pract. 5(6), 351–353 (2013)

    Article  Google Scholar 

  15. Sundström, A., Albertsson, P.: Self- and peer-assessments of ambulance drivers’ driving performance. Iatss Res. 36(1), 40–47 (2012)

    Article  Google Scholar 

  16. Raaber, N., Duvald, I., Riddervold, I., Christensen, E.F., Kirkegaard, H.: Geographic information system data from ambulances applied in the emergency department: effects on patient reception. Scand. J. Trauma Resuscitation Emerg. Med. 24(1), 1–9 (2016)

    Article  Google Scholar 

  17. Fu, Q., Li, B., Yang, L., Wu, Z., Zhang, X.: Ecosystem services evaluation and its spatial characteristics in central Asia’s arid regions: a case study in Altay prefecture, china. Sustain. 7(7), 8335–8353 (2015)

    Article  Google Scholar 

  18. Xie, Z., Liu, G.: Blood perfusion construction for infrared face recognition based on bio-heat transfer. Bio-Med. Mater. Eng. 24(6), 2733–2742 (2014)

    Google Scholar 

  19. Jin, L., Niu, Q., Jiang, Y., Xian, H., Qin, Y., Xu, M.: Driver sleepiness detection system based on eye movements variables. Adv. Mech. Eng. 2013(5), 1–7 (2013)

    Article  Google Scholar 

  20. Wang, T., Dong, J., Sun, X., Zhang, S., Wang, S.: Automatic recognition of facial movement for paralyzed face. Bio-Med. Mater. Eng. 24(6), 2751–2760 (2014)

    Google Scholar 

  21. Vithya, G., Sundaram, B.V.: Inpatient critical stage monitoring in smart hospitals by contextual Fuzzy based QoS routing for WBMS network nurse call system. Wirel. Pers. Commun. 94, 1–16 (2016)

    Google Scholar 

  22. Nandyala, C.S., Kim, H.K.: From cloud to Fog and IoT-based real-time U-healthcare monitoring for smart homes and hospitals. Int. J. Smart Home 10(2), 187–196 (2016)

    Article  Google Scholar 

  23. Chen, X., Wang, L., Ding, J., et al.: Patient flow scheduling and capacity planning in a smart hospital environment. IEEE Access 4, 135–148 (2016)

    Article  Google Scholar 

  24. Al-Refaie, A., Chen, T., Judeh, M.: Optimal operating room scheduling for normal and unexpected events in a smart hospital. Oper. Res. pp. 1–24 (2016)

    Google Scholar 

  25. Vecchia, G.D., Gallo, L., Esposito, M., et al.: An infrastructure for smart hospitals. Multimed. Tools Appl. 59(1), 341–362 (2012)

    Article  Google Scholar 

  26. Yao, W., Chu, C.H., Li, Z.: Leveraging complex event processing for smart hospitals using RFID. J. Netw. Comput. Appl. 34(3), 799–810 (2011)

    Article  Google Scholar 

  27. Fang, Y.L., Zhang, A., Wang, H., Li, H., Zhang, Z.W., Chen, S.X., Luan, L.Y.: Health risk assessment of trace elements in Chinese raisins produced in Xinjiang province. Food Control 21(5), 732–739 (2010)

    Article  Google Scholar 

  28. Jing, L.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Google Scholar 

  29. Dewan, M.A.A., Granger, E., Marcialis, G.L., et al.: Adaptive appearance model tracking for still-to-video face recognition. Pattern Recogn. 49(C), 129–151 (2016)

    Article  Google Scholar 

  30. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  31. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. Int. J. Comput. Graph. 31(4), 471–484 (2015)

    Google Scholar 

  32. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Softw. Eng. 33(11), 2259–2272 (2011)

    MathSciNet  Google Scholar 

  33. Yamins, D.L.K., Dicarlo, J.J.: Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19(3), 356–365 (2016)

    Article  Google Scholar 

  34. Chen, L., Qu, H., Zhao, J., Principe, J.C.: Efficient and robust deep learning with Correntropy- induced loss function. Neural Comput. Appl. 27(4), 1019–1031 (2016)

    Article  Google Scholar 

  35. Ghesu, F.C., Krubasik, E., Georgescu, B., Singh, V.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 35(5), 1217–1228 (2016)

    Article  Google Scholar 

  36. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  37. Greenspan, H., Ginneken, B.V., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  38. Wang, Y., Luo, Z., Jodoin, P.M.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. (2016). doi:10.1016/j.patrec.2016.09.014

    Google Scholar 

  39. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2016)

    Article  Google Scholar 

  40. Leng, J., Jiang, P.: A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowl.-Based Syst. 100(C), 188–199 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the CAS ‘Light of West China’ Program (XBBS-2014-16), the Shenzhen Basic Research Project (JCYJ20150630114942260), the “Thousand Talents” plan (Y474161) and the National High Technology Research and Development Program (2013AA122302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Chen , Hongwei Zheng or Jing Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, W., Chen, X., Zhou, H., Zheng, H., Sun, D., Qian, J. (2017). Ambulanceye – The Future of Medical Rescues. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5230-9_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5229-3

  • Online ISBN: 978-981-10-5230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics